
This paper is included in the Proceedings of the
Seventeenth Symposium on Usable Privacy and Security.

August 9–10, 2021
978-1-939133-25-0

Open access to the Proceedings of the
Seventeenth Symposium on Usable Privacy

and Security is sponsored by

Code Reviewing as Methodology for Online Security
Studies with Developers – A Case Study with

Freelancers on Password Storage
Anastasia Danilova, Alena Naiakshina, and Anna Rasgauski, University of Bonn;

Matthew Smith, University of Bonn, FKIE Fraunhofer

https://www.usenix.org/conference/soups2021/presentation/danilova

Code Reviewing as Methodology

for Online Security Studies with Developers –

A Case Study with Freelancers on Password Storage

Anastasia Danilova
University of Bonn

danilova@cs.uni-bonn.de

Alena Naiakshina
University of Bonn

naiakshi@cs.uni-bonn.de

Anna Rasgauski
University of Bonn

rasgausk@cs.uni-bonn.de

Matthew Smith
University of Bonn, FKIE Fraunhofer

smith@cs.uni-bonn.de

Abstract

While ample experience with end-user studies exists, only

little is known about studies with software developers in a

security context. In past research investigating the security

behavior of software developers, participants often had to

complete programming tasks. However, programming tasks

require a large amount of participants’ time and effort, which

often results in high costs and small sample sizes. We there-

fore tested a new methodology for security developer studies.

In an online study, we asked freelance developers to write

code reviews for password-storage code snippets. Since de-

velopers often tend to focus on functionality first and security

later, similar to end users, we prompted half the participants

for security. Although the freelancers indicated that they feel

responsible for security, our results showed that they did not

focus on security in their code reviews, even in a security-

critical task such as password-storage. Almost half the partic-

ipants wanted to release the insecure code snippets. However,

we found that security prompting had a significant effect on

the security awareness. To provide further insight into this

line of work, we compared our results with similar password-

storage studies containing programming tasks, and discussed

code reviewing as a new methodology for future security

research with developers.

1 Introduction

Code reviewing is a technique applied at the end of the

Software Development Life Cycle (SDLC), used as one

of the final steps by software developers to ensure pro-

Copyright is held by the author/owner. Permission to make digital or hard

copies of all or part of this work for personal or classroom use is granted

without fee.

USENIX Symposium on Usable Privacy and Security (SOUPS) 2021.

August 8–10, 2021, Vancouver, B.C., Canada.

gramming code quality before software release. Thus, soft-

ware developers change their perspective from a code cre-

ator to a code inspector, which might affect their security

awareness. While knowledge on code reviewing in the

field of software engineering exists [9, 19, 32], only little

is known about this methodology within a security con-

text [13]. Acar et al. [4] called for more studies on devel-

opers’ security behavior and on the study methodology of

security developers. While most of the previous work within

this context includes surveys (e.g., [7, 11, 21, 28, 37]), inter-

views (e.g., [6, 11, 18, 21, 24, 36–38]) or programming tasks

(e.g., [2, 3, 17, 20, 22, 23, 25, 25–27, 30, 39–42]), we explored

code reviewing as a promising methodology for developer

security studies.

Conducting security studies with software developers can

be difficult due to recruitment and study compensation chal-

lenges [3–5,10,12,20–22,25,31,42]. Programming tasks can

also often take more time than professionals can afford. Na-

iakshina et al. [22–25] conducted a number of studies where

computer science (CS) students, freelance developers and soft-

ware developers from companies were required to complete

the registration functionality in a web application. The au-

thors investigated participants’ security behavior with a focus

on the storage of user passwords in a database. According to

the study design and participants’ feedback, the study lasted

around 8 hours. Recruiting a high number of employed devel-

opers who had time outside of their normal working hours for

a one-day study was reported to be extremely difficult. Thus,

their sample size is not as large as they would have wished.

Therefore, researchers often tend to design programming

tasks in such a way that software developers only need to solve

small and short tasks (e.g., [2, 3, 5, 33]). For example, Acar

et al. [5] conducted a security developer study with GitHub

users and provided them with programming tasks which were

“short enough so that the uncompensated participants would

be likely to complete them before losing interest, but still

complex enough to be interesting and allow for some mis-

takes.” While Acar et al. did not mention security or privacy

in the recruitment message at all, Naiakshina et al. tested if

USENIX Association Seventeenth Symposium on Usable Privacy and Security 397

explicitly asking participants for secure password storage (se-

curity prompting) would affect their solutions. They found

that security prompting had a significant effect on participants

solutions. Additionally, participants tended to concentrate

on the functionality of the software first, before working on

security aspects [22–24].

To provide deeper insights into this research field, we tested

code reviewing as a promising methodology for security stud-

ies with developers. Instead of asking developers to program

a piece of code, we showed them functional code snippets

and asked them to write code reviews about the snippets. We

based our code snippets on the participants’ submissions from

the previous freelancer study from Naiakshina et al. [23] and

also recruited freelance developers. This allowed us to com-

pare the results of the code review task with the findings of

the previous study containing a programming task. While

we offer insights on freelancers’ behavior in code reviewing

tasks on a primary level, we also discuss code reviewing as a

methodology for developer security studies on a meta-level.

Our main research questions are as follows:

RQ1: How do developers behave when reviewing code

in a security-critical task such as password storage?

We were interested to find which criteria the developers

mostly base their reviews on in security-critical code,

and whether they would be able to indicate the security

issue, even when being presented with distraction tasks

not related to security. Additionally, how detailed would

their security problem description and suggestions for

improvement be? Would they suggest to release the code

even though it contains security-critical issues?

RQ2: Which factors have an influence on developers’

security awareness? In particular, we investigated

whether prompting, programming experience or code

snippets with different password-storage issues (plain

text, Base64, MD5) have an influence on whether devel-

opers find the security issues.

RQ3: How much time do developers dedicate to security

and do they feel responsible for security in a code re-

view? We asked the freelance developers to indicate how

much time they spend with security in code reviews and

whether they feel responsible for security. These results

were compared to their self-reported responsibility and

time spent on security in programming tasks.

RQ4: Comparing the results of a programming and

a code reviewing task on password storage, which

methodological implications can we conclude? To

provide insights for security studies with developers, we

discuss the advantages and disadvantages of code review-

ing as a study methodology compared to programming

tasks.

2 Related Work

Our related work section is divided into two parts. First, we

discuss related work in the area of developer, security and

password-storage studies. We then take a closer look at code-

reviewing studies.

2.1 Developer and Password Studies

A qualitative study from Naiakshina et al. [24] in 2017 inves-

tigated the password-storage implementation behavior of 20

CS students. The participants were given a scenario where

they were told they were working in a team to implement

the registration functionality of a social networking platform.

Half of the students were prompted beforehand and told to

implement a secure solution. None of the non-prompted stu-

dents implemented a secure solution. As often found with

end users, there was also a tendency with developers to offer

functionality over security. This study was extended by the

authors in 2018, by inviting 20 additional CS students [25].

The authors acknowledged that they had challenges to recruit

enough participants for the study. Out of a pool of 1600 CS

students at their university, only 40 participated in the study.

The exploratory quantitative study supported the findings of

the qualitative study. However, CS students stated that they

would have implemented a secure solution had the task been

for a real company.

To find out whether the previous results were a study ar-

tifact, in 2019 Naiakshina et al. [23] conducted a similar

study, but this time with 43 freelancers. Hired through Free-

lancer.com, the participants were asked to implement the reg-

istration functionality for a fictitious online sports-picture

sharing platform. Here it was also found that prompting has

an effect on the security of the end solutions. 15 of the 22 non-

prompted, and even 3 of the 21 prompted freelancers received

security requests after submitting insecure solutions [23]. Un-

like the previous study, the participants believed they were

working for a real company. This did not appear to have an

impact on the security of the end solution. The same study

was also conducted with 36 professional developers from di-

verse companies in 2020 [22] and again, prompting had an

effect on the security of participants’ submissions.

Another study on password-storage was conducted by Wi-

jayarathna et al. [40]. Their study was similar to the one

described in the previous papers. To explore the usability of

the SCrypt password hashing functionality of Bouncycastle,

the authors conducted a 2-hour study with 10 programmers

and reported 63 usability issues with the Bouncycastle API. A

further study from Wijayarathna et al. [39] investigated how

security responsible programmers feel when writing code.

The participants were expected to complete four program-

ming tasks including a password storage task. They found

that developers know they are responsible for security, but

often have a difficult time implementing security measures.

398 Seventeenth Symposium on Usable Privacy and Security USENIX Association

A study investigating having GitHub members for devel-

oper studies was conducted by Acar et al. [5]. 307 participants

completed three small python programming tasks and then

filled out a survey, all without payment. One of the tasks was

to store login credentials in a database. The researchers set out

to explore how well GitHub users can replace IT-professionals

in developer studies, who often do not have time for studies

outside of their working schedules and who often have an

hourly rate much higher than that offered for taking part in

studies. They found that whether a participant is a profes-

sional or a student had no significant effect on the security

perception of the participant or on the functionality or security

of the solution implemented. Experience did however have

an effect: each year of added python experience increased the

chance of a secure solution by 5%.

Tahei et al. [34] reviewed literature looking at security from

a developer perspective. They found there was generally a

lack of research in developer-centered-security, and that secu-

rity needed to become of higher business value. As found in

the previously mentioned studies, security knowledge among

software developers is often lacking and security is often a

secondary requirement.

2.2 Code-reviewing Studies

Baum et al. [9] looked at code-reviewing practices in 19

firms, 11 of which regularly conduct some kind of code re-

view. They found that some firms use multiple reviewers,

particularly when making large changes to code. Aside from

being used to improve the quality of the code and find defects,

the researchers found that code reviews are also conducted to

enable a learning process of the coder. Furthermore, it was

found that some firms do not conduct code reviews: develop-

ers can often feel attacked by code reviews and need time to

adjust to the new method. Bacchelli et al. [8] supported the

finding that code reviews are often used as a learning process

in firms. They also found that “finding defects” in code was a

driving factor for conducting code reviews. In multiple papers

the term “finding defects” included security issues, but mostly

included other kinds of defects [8, 9, 29].

Using the largely open source Mozilla project, Kononenko

et al. [19] studied the quality of code-reviews. 54% of bugs

were not found during the code-review. The authors found a

positive correlation between reviewing experience and num-

ber of bugs found. Coding experience did not have an impact

on the number of bugs found. They found larger patches and

an increased number of files to be reviewed increased the

chance of introducing “buggy” patches. The use of super re-

viewers, a reviewer who is a highly experienced developer,

decreases the probability of introducing patches with bugs in

them.

What effect availability bias has on code reviews was in-

vestigated by Spadini et al. [32]. Using a browser-based re-

viewing tool chosen by the researchers, the participants were

expected to review a code change. The change contained three

errors: two errors were of the same type and were bugs that

reviewers do not usually look for, whereas as the third was

of another type. Half of the participants were non-primed

and received a code change where none of the bugs had been

commented on, whereas as the other half were primed and

received a code change where one of the errors had been

commented on by another reviewer. The researchers found a

correlation between priming the participants and the partici-

pants finding the other error of this type. 80% of participants

mentioned they were influenced by the comments in the code.

The non-primed bug was found by both groups at a similar

rate.

A study investigating the optimal number of code-reviewers

for a given task was conducted by Edmunson at al. [13].

The participants were web developers all with various back-

grounds and security experience. They were presented with

and expected to review an existing open-source project, which

had some security issues. Edmunson et al. found a correlation

between the number of correct vulnerabilities found and the

number of false vulnerabilities found. Having more than 15

reviewers did not bring any further improvement. Interest-

ingly, the researchers found a negative correlation between

the number of years of experience and the number of correct

vulnerabilities found. Our study differs from Edmunson et

al.’s study in several aspects. First, while Edmunson at al.’s

participants were informed about security issues within the

web application they had to review, we did not mention that

our code had issues at all. Additionally, half of our partici-

pants were advised to consider security for the code review,

while the other half were not. Second, in addition to the se-

curity issues, we also added general issues within the code,

so we were able to see which issues participants are more

aware of, if they recognized them at all. Third, we showed

participants one simple code snippet in the context of se-

cure password storage, whereas Edmunson et al. investigated

Cross-Site Scripting and SQL injection vulnerabilities within

an entire web application project.

Most work using code reviewing as a study methodology

was conducted in the field of software engineering. It is un-

clear yet, whether the findings are transferable to a security

context. For example, Kononenko et al. [19] found a posi-

tive correlation between reviewing experience and number

of bugs found, unlike the study from Edmunson et al. [13].

With our study we aim to provide deeper insights into code

reviewing as a methodology for developer studies within a

security context.

3 Methodology

Past work showed that software developers perceive security

as more of a secondary task during programming and thus

need to be explicitly asked to consider security aspects in the

task requirements [22–24, 27]. It is however unclear, whether

USENIX Association Seventeenth Symposium on Usable Privacy and Security 399

this holds true for code reviewing. The fact that code reviews

are usually written at the end of the SDLC might affect devel-

opers’ security awareness and thus improve the quality and

security of the code.

In this work, we investigated whether software developers

think of security when writing a review for security criti-

cal code, such as user password storage. For this we set up

an online survey, for which we recruited freelance develop-

ers on Fiverr.com [1]. The complete survey can be found

in the Appendix A. Half the participants were prompted for

password-storage security prior to writing the review, and the

other half were asked without being prompted to write the

review. Hence, we explored the independent variable (IV)

security prompting with the two values prompting and non-

prompting. Additionally, we investigated whether different

password storage implementations affect the code reviews.

Thus, the participants were shown at random one of three

insecure code snippets (plain text, Base64, MD5). Hence, our

second IV variable was the code snippet each participant re-

ceived, leaving us with a total of six conditions within our

study. We conducted a between-subjects study, where each

participant randomly received one of the three snippets.

Apart from prompting the prompted groups of participants

to ensure the password is stored securely, we did not give any

criteria to complete the review. We wanted to find out which

criteria the participants chose and which issues they found

without further requests. We recorded all questions received

from the participants during the task and recorded our answers

to these in a play-book to avoid giving more information

to some participants than to others (see Appendix B). In

addition to that, we provide further insights on a meta-level

for using code reviewing as a new, promising methodology

for developer studies within a security context.

We conducted a pilot study with one participant to test the

survey and to get a better time estimation for the task. The

participant finished within two hours. After correcting minor

issues with the survey, we conducted the actual study between

May and July 2020. We asked our participants to complete

the code reviewing task within one week. Thus, we hoped to

increase the number of participants.

3.1 Survey

In the survey, we showed the participants one of three code

snippets, each of which contained a password storage imple-

mentation. The participants were asked to write code reviews

for the snippets. We also asked them to list criteria on which

they based their reviews and if they would release the code

as it is, with minor adjustments or not at all. After the par-

ticipants finished their code review, they were requested to

explain the concepts of hashing and salting. Further, we asked

them about their code reviewing experience and how much

of a priority security is to them.

We switched off the back button to prevent the participants

from changing their code reviews after being asked for code

security. That way we aimed to get an unbiased view on the

code reviews and to avoid priming participants for security

by the survey.

Since we did not ask participants to write but only review

programming code, we included a small programming test

to the survey, which was also used by Danilova et al. in [11].

Danilova et al. recruited software developers for an online

survey study on security warnings. To assure that their par-

ticipants really had programming skills, the authors designed

a multiple choice question with a code snippet where “hello

world” was printed out backwards. About 74% of the par-

ticipants recruited online on the survey platform Qualtrics

failed the test, although all of them indicated to have program-

ming skills. To ensure data quality, our participants were also

shown this multiple choice question. Finally, the participants

had to answer demographic questions.

3.2 Code Snippets

For the code review task, we chose code snippets submitted by

freelancers from the study conducted by Naiakshina et al. [23]

for two reasons. Firstly, it was programming code created by

freelance developers who believed they were working on the

registration functionality for a real company which was to

be submitted for release. Secondly, it allowed us to compare

our code review results with the findings of the programming

code analysis from Naiakshina et al. with regards to both the

effectiveness of security prompting and the accuracy of the

submissions.

Additionally, we wanted to test whether different program-

ming code snippets have an influence on our participants’

submissions. We concentrated on the bad practices used by

freelancers in [23]. While we decided upon a plain text code

snippet as a baseline, we also added one snippet using MD5

as a hashing function and another using Base64 encoding,

as these were prevalent within the freelancers’ submissions

in [23]. We made sure that the three snippets had an approx-

imately similar length (120-130 lines). To further improve

their comparability, we adjusted the selected snippets in the

following way. First, to reduce the risk of comments influenc-

ing the code review, we deleted all comments from the chosen

snippets. To look more realistic, but still stay comparable, we

added generic comments which were the same for all snip-

pets. We added comments to the head of the class as well as

in the main functions, but not to the trivial setters and getters.

Second, we rearranged the order of the functions so that all

participants would see the functions in the same order when

reviewing the code, as we did not want the function order to

influence our results. Third, we added two distraction tasks to

all of the snippets:

1) Exception swallowing: An empty catch block is considered

to be bad practice as possible exceptions would be ignored.

2) Logical mistake: Within an if-loop we used only one “=”

400 Seventeenth Symposium on Usable Privacy and Security USENIX Association

Table 1: Demographics of participants (n = 44)

Age min: 19, max: 35 sd: 3.83 median: 24.0 mean: 25.06

General Programming Experience min: 1, max: 12 sd: 2.43 median: 4.0 mean: 4.46

Java Experience min: 0.5, max: 10 sd: 2.3 median: 2 mean: 3.19

Gender Female: 3 Male: 40 Prefer to self-describe: 1

Occupation Freelance Developer: 27 Industry Developer: 8 Undergraduate: 2 Other: 3

Academic Researcher: 1 Industry Tester: 1 Graduate: 1 Freelance Tester: 1

Country of Residence Pakistan: 21, India: 8 UK: 3, Portugal: 1 Burkina Faso: 1 Morocco: 1

Nigeria: 1, Turkey: 1 Malaysia: 1, Italy: 1, US: 1 Bangladesh: 1 Sri Lanka: 2 , NA: 1

in the condition. The condition is therefore always true since

an assignment is executed instead. We expected that since

the participants are eager to find mistakes in a study on code

reviewing, these distraction tasks could divert the attention of

the participants from the password storage implementation.

The three code snippets can be found in the Appendix C.

3.3 Participants

Like Naiakshina et al. [23], we wanted to recruit freelance

developers on Freelancer.com. However, our project was re-

peatedly denied by the platform with generic explanations

such as: “Your project shows behavior that is contrary to

our Code of Conduct.” We contacted the platform’s support

service several times to clarify that we wanted to conduct a

scientific study with freelancers. However, we were not able

to solve our issues at that time and thus decided to use an-

other freelancer platform for the recruitment of participants:

Fiverr.com [1].1

In the freelancer study by Naiakshina et al., participants

received either e120 or e220 for participating in a study of

six to eight-hours. No significant difference was found on the

security of the submissions between the different payment

groups. Since our study was estimated to take one hour and

the participant in the pilot study needed two, we decided on a

compensation of $50.

We posted our project in four iterations receiving up to

15 applications per posting. With each iteration, the number

of repeated offers increased. On Fiverr.com it is required to

attach categories and subcategories to the post. Our post was

included in the categories “Programming and Tech”, “Web-

programming” and “Java.” In total we received 61 applica-

tions to take part in our study. All except four were invited to

the study; reasons for not being invited to take part included

being under 18 or not having any programming experience.

Four freelancers did not respond upon our invitation, six did

1Another reason the support service of Freelancer.com offered us was:

“Academic cheating is not allowed.” As pointed out by Naiakshina et al. [23],

it seems that students often use this platform for hiring freelancers to do their

university homework. We are still in contact with the enterprise department

of Freelancer.com, which reassured us that university studies are welcome to

use their platform. It seems that an enterprise self-service would have solved

our previous issues.

Table 2: Number of participants per group (n = 44)

Plain text MD5 Base64

Prompted 8 7 8

Non-prompted 6 7 8

not want to participate, and two participants canceled after in-

vitation before starting with the study. Finally, 45 freelancers

completed our survey. To assure data quality, we excluded one

participant from our data set who was not able to answer the

“hello world” backward question from Danilova et al. [11].

Table 1 summarizes the demographics of our participants.

Out of 44 participants, 40 reported to be male, 3 female, 1

preferred to self-describe. They reported to be between 19

and 35 years old (mean: 25.06 years, median (md): 24 years,

sd: 3.83). Further, most of the participants reported to live

in Pakistan or India. The general programming experience

ranged between one and 12 years with a median of 4 years.

All except 2 had at least 2 years of general programming

experience and all but 8 reported to have at least 2 years of

Java experience (min: 0.5, max: 10, md: 2, mean: 3.19). Most

(27) named freelancing as their main profession. All except

two participants reported to have reviewed code by others in

the past. Table 2 shows the number of valid participants in

each group.

3.4 Evaluation

3.4.1 Security

We evaluated the security of participants’ code review sub-

missions in the following way. First, we introduced a binary

variable found password storage issue with two values: 1: par-

ticipants stated in their reviews, that they found some issues

with password storage security; 0: participants did not state

in their reviews, that they found some issues with password

storage security.

Second, to identify how accurate our participants’ code re-

views were with regard to the secure password-storage param-

eters, we used the security score of Naiakshina et al. in [23].

Participants received 2 points for hashing and salting the user

USENIX Association Seventeenth Symposium on Usable Privacy and Security 401

passwords, another 2 points if the salt was randomly gener-

ated and at least 32 bits in length, and another 3 points for

iterations, a memory-hard hashing function and if the hash’s

derived length was at least 160 bits long [24]:

1. The end-user password is salted (+1) and hashed (+1).

2. The derived length of the hash is at least 160 bits long

(+1).

3. The iteration count for key stretching is at least 1000

(+0.5) or 10000 (+1) for PBKDF2 and at least 210
= 1024

for bcrypt (+1).

4. A memory-hard hashing function is used (+1).

5. The salt value is generated randomly (+1).

6. The salt is at least 32 bits in length (+1).

3.4.2 Qualitative

The code reviews were evaluated qualitatively with inductive

content analysis [14]. We decided upon an inductive coding

method, as opposed to a deductive coding method, as we did

not want to assume what our results would be. The evaluation

process included open coding and creating categories. Since

we used the “independent parallel coding” approach of David

R. Thomas [35], we compared two sets of categories and

report the inter-coder agreement for them. The two sets of

categories were subsequently merged into a combined set. We

calculated the inter-coder agreement Cohen’s Kappa (κ) and

received an agreement of 0.82. Fleiss et al. considered a value

above 0.75 a good level of coding agreement [16].

3.4.3 Quantitative

We additionally conducted an exploratory quantitative anal-

ysis. We established the variable from the reviews (found

password storage issue) and evaluated the effect of our two

IVs (security prompting, code snippet) on this variable using

Fisher’s exact tests (FET) [15, p. 816]. To test for correla-

tions, we used the Pearson’s correlation coefficient. To exam-

ine effects in continuous data, we used Wilcoxon Rank sum

tests. All tests referring to the same dependent variable (found

password storage issue) were corrected using the Bonferroni-

Holm correction. The corrected p-values are referred to as

cor− p.

3.5 Ethics

The institutional review board of our university reviewed and

approved our project. We provided the participants of our

study with a consent form outlining the scope of the study,

the data use and retention policies; we also complied with the

General Data Protection Regulation (GDPR). The participants

were informed of the practices used to process and store their

data and that they could withdraw their data during or after

the study without any consequences. Also, the participants

were asked to download the consent form for their own use

and information.

3.6 Limitations

The participants who took part in this study were recruited

on Fiverr.com. They may not be representative for all devel-

opers and results may even differ among different freelance

platforms. Code reviews are usually performed in companies,

so the freelancers might not have had experience with code

reviews. However, we aimed to test code reviewing as a study

methodology for developer studies as opposed to studying the

code review experience.

The majority of participants were non-native English speak-

ers and their responses were not always so clear to understand.

Some participants may have had trouble understanding the

questions. While this is not desirable for a study, it still rep-

resents a realistic scenario, since freelancers with the same

issues are hired for real life projects. Moreover, all partici-

pants were informed that this project is part of a study. It

could be that the participants would have behaved differently

had they been writing a code review for a real life project.

We conducted an a priori power analysis with an effect

size from Naiakshina et al. from [22] to calculate the neces-

sary sample size to prevent type II errors of falsely rejecting

null hypotheses. The required sample sized turned out to be

45 persons per group. However, we were not able to recruit

enough freelancers on Fiverr.com, even though we used multi-

ple rounds of recruitment and posted the project repeatedly on

the platform. The recruitment of software developers is a chal-

lenging task and small sample sizes can limit the method’s

potential and the generalizability of results. Therefore, our

analysis needs to be considered as an explanatory first glance

on the problem.

4 Results

The results section is structured as following. First, we present

the findings of our qualitative analysis. Second, we report the

results of our exploratory quantitative analysis. Third, we

compare our results with a similar study containing a pro-

gramming task on password-storage. We report statements

of specific participants by labeling them according to their

conditions. The first letter of the label refers to Prompting or

Non-Prompting. The second denotes the code snippet used

(Base64, MD5, or Plain text). While qualitative analysis is

more frequently used to explore phenomena, we still pro-

vide the numbers of participants to give an indication of the

frequency and distribution of themes. An overview of the

evaluation of participants’ submissions can be found in the

Appendix D.

402 Seventeenth Symposium on Usable Privacy and Security USENIX Association

4.1 Qualitative Analysis

The reviews of our participants differed in quality, word count

and content. The majority of participants (36 of 44) reported

to have reviewed the snippet manually, 4 said that they used

an IDE (Eclipse, NetBeans, Visual Studio Code) to check the

code, and 4 reported to have used a static analyzer (PMD,

sonarlint, findbugs, codacy). With such a small sample size,

we could not draw conclusions but it might be worth explor-

ing the use of static analyzers in future studies. On average

participants needed a median of 83 minutes to complete the

survey. The fastest was submitted after 12 minutes. Some

participants took more time since the deadline to complete

the project was set to one week.

4.1.1 Participants’ Review Criteria

To provide insights into the security awareness and focus

of freelancers, we evaluated the criteria which participants

mentioned to have looked for in their code reviews. A

detailed list of criteria mentioned by our participants is

available in the Appendix E. We categorized the answers as

follows:

Implementation: A total of six participants said that

functionality was one criteria they looked for. Logic was

mentioned by eight participants to be an important topic to

look for in source code. One participant reported to have

looked for maintainability and two mentioned performance

and efficiency (PB5, NP4). A large number of participants

(14/44) reported to also have checked for error handling.

Testing and bugs: NM3 said that quality assurance was

one criteria to check for, while PB7 checked for unit tests and

whether all scenarios are considered. NM1, NM5, and NP4

said they looked for bugs or errors in the code. A number of

participants mentioned syntax to be a criterion to look for.

Standards and validation: NB1 and PB1 said that they

checked whether code standards are met in the code. Three

participants mentioned that code format was a criterion they

checked for (PB2, NM4, PP5). Nine participants reported

that they looked for the correct usage of get and set methods.

NM1, NP2, NB8 mentioned the inspection of the model

view controller architecture. Further, several participants

reported to check imported packages and libraries. Some

participants mentioned input validation and null checks

(PM6) as criteria they checked the code for. Additionally,

several freelancers reported to have checked for code style

issues; e.g., camel case or naming conventions in the code.

PB1 and PB2 wrote that they looked for duplicated code

or unused code. Furthermore, four participants reported to

assess the code complexity. Some participants said that they

checked the code for readability and comments.

Security: Security in general was mentioned as a criterion

by 10 participants. Eleven participants specifically included

password storage security in their criteria. Data security was

mentioned by 4 participants.

4.1.2 Found Password Storage Issue

Thirteen participants specifically mentioned in their reviews

that secure password storage is an issue. Of these, only 2 were

non-prompted. To solve the issue, PP8 suggested to use an

external authentication service:

“Depending on the application it may also be better

in this case to simply use an external auth service

such as that offered by google” (PP8).

Some prompted participants misinterpreted our prompt-

ing task description “Please ensure that the user password is

stored securely” as password validation (NM3, PP4, PB8). For

example, PB8 included secure password policies in the review

but failed to detect the insecure password storage method:

“The password must be at least 8 characters long.

The password must have at least one uppercase and

one lowercase letter. The password must have at

least one digit. This needs to be updated” (PB8).

NM3 mentioned another password validation policy issue:

“The most important part is the one you are not ver-

ifying the password what if it is equal to username.

You should know that any person who is trying hit

and try on the passwords will definitely first try to

enter same username and password and he might

be successful in your code and it’s the worst part in

security risks.”

We also found that a number of participants used “password

encryption” as a suggestion in their review, which is a con-

cept not recommended for secure user password storage in a

database. Furthermore, the prompted participant PB6 wrongly

stated that the code snippets contained SQL and JAR injec-

tions, but did not mention insecure password storage as an

issue. Finally, PM3 perceived the password storage implemen-

tation as “too complex” and asked in their review for more

comments in the code snippet. A detailed list of code issues

reported by our participants is available in the Appendix F.

4.1.3 Security Score

A number of participants commented on the password storage

methods of the code snippets. Some participants explicitly

said that the password storage functions were sufficient (NM4,

NM5, PB8), others saw issues with the functions.

For example, a number of participants recommended using

secure hashing functions like bcrypt (PM1, PM5), PBKDF2

USENIX Association Seventeenth Symposium on Usable Privacy and Security 403

(PM6), ARGON2 (PM1) or scrypt (PM5). In contrast, oth-

ers recommended less secure functions such as MD5 (PP4),

SHA-1 (PM4, PP4) or SHA-2 (PM1) (without mentioning

iterations). It is noted that SHA-1 and SHA-2 can be secure

when used with a key derivation function like PBKDF2, but

we cannot assume that the participants mean this if they do

not include it in their reviews. The code reviews of the 13 par-

ticipants who identified user password storage security as an

issue often lacked details. Thus, we only were able to grade 11

participants by using the security scale. Table 3 summarizes

all the participants who found an issue with user password

storage and their score according to the security scale. Only

two participants specifically mentioned that a salt should be

used.

4.1.4 Distraction Tasks

Some participants found the issues we introduced as distrac-

tion tasks. The logical mistake was found by 8 participants

and the exception swallowing was mentioned by 12 partici-

pants.

NM5 falsely stated that error handling was done correctly.

Out of all the 16 participants who found at least one distrac-

tion issue, 13 did not find the password storage issue, and 3

did (PM7, PB1, PM4). This might indicate that the distrac-

tion issues could have indeed distracted the participants from

security. However, from the 13 participants who found the

password storage issue, only 3 found at least another distrac-

tion issue.

4.1.5 Ready for Release?

We asked our participants to choose whether the code can 1)

be released, 2) be released but the issues mentioned in the

review need to be fixed for the next update, or 3) whether

the code did not pass the review. Out of 44 participants, 2

said that the code can be released. Both found no security

issues. Another 17 said that the code can be released but the

issues should be fixed for the next update. 12 of these 17

participants did not find the security issue, so they referred

to non-security related issues which needed to be fixed. The

remaining 25 said the code did not pass the review and should

not be released until the issues were fixed. 17 of these 25

participants, however, did not find the security issue with

password-storage, so they have based their decision to not

release the code on issues other than security. A detailed

overview can be found in the Appendix D.

4.1.6 Participants’ Definition of Hashing and Salting

After the review completion, we asked our participants to give

the definition of hashing and salting passwords. We wanted to

find out how many participants were able to correctly define

hashing and salting of passwords. On average the participants

took 8 minutes to answer this question (md: 5). We evaluated

Table 3: Security score of participants who found the pass-

word storage issue

Snippet P Score Salt Suggestion

NP1 Plaintext n 0 - “hashcode genera-

tion or convert in

Hexa or other for-

mats”

NP5 Plaintext n 0 - -

PB1 Base64 p 0 - “an encoded for-

mat”

PB2 Base64 p 2 Y -

PM1 MD5 p 3 - “SHA2, Argon2,

bcrypt”

PM4 MD5 p 1 - “SHA-1”

PM5 MD5 p 3 - “bcrypt, scrypt”

PM6 MD5 p 4 Y “PBKDF2”

PM7 MD5 p 0 - -

PP1 Plaintext p 1 - -

PP2 Plaintext p 0 - -

PP3 Plaintext p 1 - -

PP4 Plaintext p 1 - “SHA, MD5”

p = Prompted, n = Non-prompted

the responses and also tracked whether the participants left

the tab inactive while answering the question. Out of 44 par-

ticipants, 20 participants left the tab inactive for some time

while 24 did not leave the tab to answer the question. The par-

ticipants who left the tab inactive spent a median of 3 minutes

outside the tab (mean: 6 minutes). This might indicate, that

participants were searching the Web for the answer.

The majority of participants, 63% (28 of 44), gave a correct

definition of hashing and salting for password storage. We

checked whether the responses matched with definitions from

the Internet indicating they were copied and pasted. We found

that 8 participants copied the entire definition or parts of their

definition from the Internet.

4.1.7 Security Responsibility

We asked our participants whether they felt responsible for

end-users’ security when writing or reviewing code. Figure 1

visualizes the responses. The “disagree” options 1,2,3 are

summarized on the left. By contrast, the “agree” options 5,6,7

are summarized on the right. The percentages next to the bars

are the sums of participants’ ratings for each side. Neutral (4)

is counted as an own point. For both tasks, the participants

reported to strongly agree with the statements. However, after

completing their reviews, we asked the participants whether

they had ensured that the user password was stored securely.

Out of 44 participants, 29 answered that they ensured that

they had, which did not correspond to the evaluation of their

404 Seventeenth Symposium on Usable Privacy and Security USENIX Association

0%

5%

93%

88%

7%

7%

I feel responsible for the security of end−users
when reviewing code.

I feel responsible for the security of end−users
when writing code.

100 50 0 50 100

Percentage

Response
1 − Strongly Disagree

2

3

4

5

6

7 − Strongly Agree

Figure 1: The responses on whether the participants feel responsible for security while code reviewing and writing.

5% 77%18%I have a good understanding of security concepts.

100 50 0 50 100

Percentage

Response
1 − Strongly Disagree

2

3

4

5

6

7 − Strongly Agree

Figure 2: The responses on whether the participants reported to have a good understanding of security concepts.

reviews. In fact, only 13 participants correctly mentioned that

insecure password storage was an issue in the snippets. This

suggests a social desirability bias while answering survey

questions, which was also reported by Naiakshina et al. [23]

in their programming study with freelancers.

Additionally, we found an overconfident self-representation

of the freelance participants. The degree of agreement to the

statement around the freelancers’ understanding of security

concepts can be found in Figure 2. PP1, NB2, NM2, NP1, and

PM6 specifically noted that security is very important in the

optional feedback field. For example, NB2 noted:

“Security is always important, developers put it in

the background.”

However, 3 participants explicitly noted in the optional feed-

back field that security is not always important, e.g., “for

robotics control” (PP8). Further, PM4 stated:

“In my experience, sometimes its not all about the

security. Some occasions we have to provide hot

fixes for urgent customers without thinking about

the security. Yes security is an essential factor but

it is not something that should be burden to a devel-

oper.”

4.2 Quantitative Analysis

In this section we report the results of our exploratory quanti-

tative analysis. We tested whether prompting, programming

n

p

0 100 200 300

Word count

G
ro

u
p

Figure 3: Word count within the reviews for the prompted and

non-prompted group.

p: Prompted n: Non-prompted

experience or different insecure code snippets had an effect

on finding the password-storage security issue. We also tested

whether prompting affected the word count of the code re-

views and whether the self-reported time participants spend

on security differs between programming and code-review

tasks.

4.2.1 Effect of Prompting on the Word Count

On average the reviews contained 100 words (md: 78 words)

with the smallest review containing 6 words and the largest

443 words. We did not find a significant effect of prompt-

ing on the word count (Wilcoxon rank-sum, W = 300.5, p =

0.17). Figure 3 visualizes the word count in both groups. Both

medians were in a similar range, however, the non-prompted

group has a higher variable spread than the prompted group.

The number of codes emerging from a code review did not

necessarily rely on the word count in the review. Short re-

views could cover different issues, while elaborate reviews

USENIX Association Seventeenth Symposium on Usable Privacy and Security 405

What percentage of your programming time do you dedicate to security?

Percentage

F
re

q
u
e
n
c
y

0 20 40 60 80 100

0
5

1
0

1
5

Figure 4: Percentage of programming time freelancers dedi-

cate to security (self-reported)

with more details could discuss only one minor issue.

4.2.2 Effect of Prompting on Finding the Password Stor-

age Issue

We evaluated whether participants correctly indicated that

there was an issue with password storage security in the snip-

pet (found password storage issue). We excluded participants

who wrote that the passwords should be “encrypted” if no

hashing function was recommended. This might mislead the

developer receiving the review to implement encryption in-

stead of hashing the passwords. Naiakshina et al. [23] reported

some encryption solutions, which shows that this might be

a problem. Eleven prompted and two non-prompted partici-

pants correctly stated that password storage was not solved

securely in the code snippet. Thus, prompting had a signifi-

cant effect on finding the issue in the code snippet (FET: p =

0.008*, cor− p = 0.02*, CI = [1.44, 89.85], OR = 8.28).

4.2.3 Effect of Experience on Finding the Password

Storage Issue

In [13], Edmundson et al. did not find a significant effect

of years of programming experience and whether the re-

viewers are more accurate or effective. We also investigated

whether programming experience had an effect on whether

participants found security issues with password storage. We

counted how many of our 3 issues the participants were able

to find (password storage, 2 distraction tasks). Similar to Ed-

mundson et al., we did not find a significant correlation be-

tween the number of issues and the years of general experi-

ence (r = 0.05, p = 0.73). Further, we did not find a significant

correlation between the number of issues and years of Java

experience (r = 0.06, p = 0.72). We also did not find a correla-

tion between Java experience and whether participants found

the password storage issue (r = 0.06, p = 0.71).

4.2.4 Effect of Different Insecure Code Snippets on

Finding the Password Storage Issue

All the three code snippets (plain text, Base64, MD5) showed

an example for insecure user password storage in a database.

What percentage of your code reviewing time do you dedicate to security?

Percentage

F
re

q
u

e
n

c
y

0 20 40 60 80 100

0
5

1
0

1
5

Figure 5: Percentage of code reviewing time freelancers dedi-

cate to security (self-reported)

We tested whether the different snippets had an effect on

whether participants found an issue with secure password

storage. For example, participants presented with an MD5

example might rather report an issue with password-storage

security than participants presented with a code snippet where

passwords were stored as plain text. We found, however,

no significant effect within each subsample, neither the non-

prompted (FET: p = 0.07, cor− p = 0.14) nor the prompted

group (FET: p = 0.26, cor− p = 0.26).

4.2.5 Time for Security

While Figure 4 visualizes the distribution of percentages of

programming time dedicated to security, Figure 5 summarizes

the distribution of percentages dedicated to security during

code reviews, according to our participants. The reported

median percentage of time that the participants dedicated to

security during code reviewing was 50 (mean: 51.64, min:

15, max: 100, sd: 26.54). The reported median percentage of

time that the participants dedicated to programming was 55

(mean: 54.89 min: 10, max: 100, sd: 26.31). We did not find a

significant difference between both reported time estimations

using the sign-rank Wilcoxon test (V = 247, p = 0.12).

5 Discussion

RQ1: Developers’ behavior in a security-critical code-

reviewing task: Code reviewing is a technique applied

at the end of the SDLC, used as one of the final steps by

software developers to ensure programming code quality

before software release. In comparison to programming

code creators, developers take roles as programming code

inspectors, which might increase their security awareness.

Our study results showed, however, that this is not necessarily

the case. It is alarming that almost half the participants

wanted to release the insecure code snippets, although

security issues with password storage can endanger millions

of end-users’ data. Even if participants indicated secure

password storage as an issue, they often suggested poor

techniques or weak hashing algorithms to improve the code.

Such poor suggestions, however, might initiate the code

406 Seventeenth Symposium on Usable Privacy and Security USENIX Association

creator to revise the code without really improving security.

It seems freelance developers need to be reminded of security

during code reviewing, otherwise they might be too focused

on other issues such as logical mistakes, conventions etc.

RQ2: Factors influencing developers’ security aware-

ness: We did not find an effect between which insecure

programming code snippet the participant received and

whether the participant reported issues with secure password

storage. This is especially interesting, considering the fact,

that they not only involved plain text password storage, but

also Base64 encoding and even MD5 as a hashing function.

Furthermore, we did not find an effect of programming expe-

rience on finding the insecure password-storage issue, which

might indicate that more experience does not necessarily

mean that the reviewers are more security aware or effective

in finding security issues.

However, similar to the programming studies of Naiakshina

et al. [22–24], we found that prompting for security in the

reviewing task had an effect on finding the password storage

issue in the code snippet. This means, that only if security

requirements were mentioned in the task description, do

participants consider security issues with password storage

in their code reviews. Our results suggested that similar to

programming, security needs to be part of the task during

code reviewing as well. Therefore, we recommend to prompt

for security when a code review is required.

RQ3: Developers’ security responsibility in a code

review: Our participants reported to spend half their

programming and code reviewing time on security. We

did not find a significant difference of the reported time

spent on security between programming and code reviewing.

Additionally, almost all the participants indicated to strongly

agree with the statement that they feel responsible for

security during programming and code reviewing and

that they have a good understanding of security concepts.

66% of the participants also indicated to have ensured

that the user passwords were stored securely after their

code reviewing task. However, considering that only 13

of 44 (30%) participants reported a security issue with

password-storage and the fact that almost all of them were

prompted, this might indicate a social desirability bias in

surveys. Our qualitative analysis showed that a number of

participants had misconceptions and outdated knowledge of

secure password storage. This might also suggest that APIs

and libraries need to provide safe security defaults instead of

requiring software developers to choose security mechanisms.

RQ4: Methodological implications: There is only lim-

ited knowledge of using code reviewing as a methodology for

security studies with developers. While we provide insights

into freelancers’ behavior in code-reviewing tasks, we also

wanted to explore which advantages, disadvantages and par-

allel insights a code-reviewing study can have in comparison

to a programming study with developers. While we cannot

conduct a direct comparison to the study of Naiakshina et

al. [23] due to methodological differences, we still discuss the

methodology of code reviewing for developer security studies

by comparing the advantages, the disadvantages and some

parallel insights of both the study types.

One disadvantage was the lack of certain information. We

were not able to calculate the security scores of participants

in such detail as Naiakshina et al. did. We could not find

all information for the security scores in the reviews since

participants simply did not mention them. Checking whether

participants found the password storage issue was, however,

still possible.

Moreover, we found that prompting had an effect on partic-

ipants’ solutions. This indicates that researchers investigating

the security awareness of freelance developers might not need

to hire them for longer programming tasks. Short and focused

code reviews can offer similar results. With a median of 83

minutes to complete the survey, our participants required less

time than Naiakshina et al.’s participants, who worked about

6-8 hours on the programming tasks.

Furthermore, code reviewing tasks can give indications

to problems with code writing. Similar to Naiakshina et al.,

we were able to identify different issues developers expe-

rienced with password storage. For example, MD5 and en-

cryption were often mentioned as adequate solutions to solve

the password-storage issue. However, MD5 is an outdated

hash function, which is not recommended any more for secure

password storage. With encryption, participants might have

referred to symmetric encryption [23], which is, as mentioned

before, a discouraged practice for secure password storage.

This suggests that code reviewing studies can offer valuable

insights into participants’ security behavior. We acknowledge

though, that code reviewing is a different process to writing

code and therefore it is not possible to prove which suggested

solutions to the issues developers would really implement.

Similar to Naiakshina et al.’s password-storage study with

students, we found that “security knowledge does not guaran-

tee secure software” [24]. Although only 30% of our partici-

pants indicated that the user passwords were stored insecurely,

63% were able to provide a correct definition for hashing and

salting after their code reviewing task. We have to note, how-

ever, that we had only limited possibilities to prove that their

definitions were not simply copied and pasted from the Web.

Its seemed that 8 participants copied the entire definition or

parts of their definition from the Internet, which indicated

that knowledge questions should be treated with caution in

surveys.

To sum up, we found that security prompting had a signifi-

cant effect regardless of whether participants completed a pro-

gramming or a code-reviewing task on password storage. Ad-

ditionally, we were able to identify participants’ misconcep-

USENIX Association Seventeenth Symposium on Usable Privacy and Security 407

tions and outdated knowledge about secure password-storage

and which criteria they believe are important in programming

code. One disadvantage, however, was that we were limited

in the comparison of the participants’ security scores, which

Naiakshina et al. introduced in their programming study. In

our study, the code reviews did not offer enough details to cal-

culate them. Still, code reviewing tasks can help investigate

programming knowledge and decrease the time developers

need to spend on a task. Participants needed less time to

complete the study compared to the studies of Naiakshina et

al. while still finding similar results with regard to security

awareness and security prompting.

While we do not argue to replace programming tasks with

code-reviewing tasks in security developer studies, funding is

often limited within academia and smaller tasks yielding sim-

ilar effects could enable more future research with developers.

Therefore, we encourage the community to conduct further

research into this line of work.

6 Conclusion

We conducted an online code reviewing study with 44 free-

lance developers showing each of them an insecure password

storage code snippet. We investigated how participants behave

in a code-reviewing study by considering which criteria they

base their reviews on, whether they would find the security

issue and most importantly, whether they would release the

insecure code snippets. Additionally, we explored different

factors, which might influence their behavior. For example,

we explored the effect of prompting for security in the task

on whether participants reported password storage security

issues within their code reviews. We also explored whether

participants feel responsible for and how much time they ded-

icate to security. Finally, we discussed the methodological

implications of a code reviewing study for developer security

studies.

Not even one third of our participants reported the security

issue with password storage. Almost all the participants who

reported an issue were prompted for security. Thus, prompting

had a significant effect on participants’ behavior. Still, almost

half the participants wanted to release the code as it is, which

is alarming since insecure password-storage is a major issue

endangering millions of users. Finally, our findings suggest

that code reviewing studies could be an interesting approach

for conducting security developer studies.

For future work we recommend testing a hybrid between a

code reviewing and a code writing developer study: a partici-

pant could receive functional insecure code and be asked to

write a review and if necessary to correct the issues within the

code. This could combine the advantages of both the method-

ologies. However, it might also increase the time of solving

the study for the participants again.

Acknowledgments

This work was partially funded by the ERC Grant 678341:

Frontiers of Usable Security.

References

[1] Fiverr.com. Accessed: September 2020.

[2] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L.

Mazurek, and C. Stransky. Comparing the Usability

of Cryptographic APIs. In 2017 IEEE Symposium on

Security and Privacy (SP), pages 154–171, May 2017.

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon

Kim, Michelle L Mazurek, and Christian Stransky. You

Get Where You’re Looking For: The Impact Of Informa-

tion Sources on Code Security. In Security and Privacy

(SP), 2016 IEEE Symposium on, pages 289–305. IEEE,

2016.

[4] Yasemin Acar, Sascha Fahl, and Michelle L Mazurek.

You are Not Your Developer, Either: A Research Agenda

for Usable Security and Privacy Research Beyond End

Users. In Cybersecurity Development (SecDev), IEEE,

pages 3–8, Piscataway, NJ, USA, 2016. IEEE, IEEE

Press.

[5] Yasemin Acar, Christian Stransky, Dominik Wermke,

Michelle L Mazurek, and Sascha Fahl. Security De-

veloper Studies with GitHub Users: Exploring a Con-

venience Sample. In Thirteenth Symposium on Usable

Privacy and Security (SOUPS 2017), pages 81–95, 2017.

[6] Hala Assal and Sonia Chiasson. Security in the Software

Development Lifecycle. In Fourteenth Symposium on

Usable Privacy and Security (SOUPS 2018), pages 281–

296, 2018.

[7] Hala Assal and Sonia Chiasson. ’Think Secure from

the Beginning’: A Survey with Software Developers. In

Proceedings of the 2019 CHI Conference on Human

Factors in Computing Systems, CHI ’19, pages 289:1–

289:13, New York, NY, USA, 2019. ACM.

[8] Alberto Bacchelli and Christian Bird. Expectations,

Outcomes, and Challenges of Modern Code Review. In

Proceedings of the 2013 International Conference on

Software Engineering, ICSE ’13, page 712–721. IEEE

Press, 2013.

[9] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schnei-

der. Factors Influencing Code Review Processes in In-

dustry. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software

Engineering, FSE 2016, page 85–96. Association for

Computing Machinery, 2016.

408 Seventeenth Symposium on Usable Privacy and Security USENIX Association

[10] Deanna D Caputo, Shari Lawrence Pfleeger, M Angela

Sasse, Paul Ammann, Jeff Offutt, and Lin Deng. Barriers

to Usable Security? Three Organizational Case Studies.

IEEE Security & Privacy, 14(5):22–32, 2016.

[11] Anastasia Danilova, Alena Naiakshina, and Matthew

Smith. One Size Does Not Fit All: A Grounded The-

ory and Online Survey Study of Developer Preferences

for Security Warning Types. In Proceedings of the

42nd International Conference on Software Engineering

(ICSE’20), 2020.

[12] Cleidson R. B. de Souza, David Redmiles, Li-Te Cheng,

David Millen, and John Patterson. Sometimes You Need

to See Through Walls: A Field Study of Application

Programming Interfaces. In Proceedings of the 2004

ACM Conference on Computer Supported Cooperative

Work, CSCW ’04, pages 63–71, New York, NY, USA,

2004. ACM.

[13] Anne Edmundson, Brian Holtkamp, Emanuel Rivera,

Matthew Finifter, Adrian Mettler, and David Wagner.

"An Empirical Study on the Effectiveness of Security

Code Review". In Jan Jürjens, Benjamin Livshits, and

Riccardo Scandariato, editors, Engineering Secure Soft-

ware and Systems, pages 197–212, Berlin, Heidelberg,

2013. Springer Berlin Heidelberg.

[14] Satu Elo and Helvi Kyngäs. The qualitative content anal-

ysis process. Journal of advanced nursing, 62(1):107–

115, 2008.

[15] Andy Field, Jeremy Miles, and Zoë Field. Discovering

statistics using R. Sage publications, 2012.

[16] Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik.

Statistical methods for rates and proportions. John Wi-

ley & Sons, 2013.

[17] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,

Christian Stransky, Sebastian Möller, Yasemin Acar, and

Sascha Fahl. Developers Deserve Security Warnings,

Too: On the Effect of Integrated Security Advice on

Cryptographic API Misuse. In Fourteenth Symposium

on Usable Privacy and Security (SOUPS 2018), pages

265–281, 2018.

[18] Julie M Haney, Mary Theofanos, Yasemin Acar, and

Sandra Spickard Prettyman. "We make it a big deal

in the company": Security Mindsets in Organizations

that Develop Cryptographic Products. In Fourteenth

Symposium on Usable Privacy and Security (SOUPS

2018), pages 357–373, 2018.

[19] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and

M. W. Godfrey. Investigating code review quality: Do

people and participation matter? In 2015 IEEE Interna-

tional Conference on Software Maintenance and Evolu-

tion (ICSME), pages 111–120, 2015.

[20] Katharina Krombholz, Wilfried Mayer, Martin

Schmiedecker, and Edgar Weippl. "I Have No Idea

What I’m Doing" - On the Usability of Deploying

HTTPS. In 26th USENIX Security Symposium (USENIX

Security 17), pages 1339–1356, Vancouver, BC, 2017.

USENIX Association.

[21] Thomas D. LaToza, Gina Venolia, and Robert DeLine.

Maintaining Mental Models: A Study of Developer

Work Habits. In Proceedings of the 28th International

Conference on Software Engineering, ICSE ’06, pages

492–501, New York, NY, USA, 2006. ACM.

[22] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,

and Matthew Smith. On Conducting Security Devel-

oper Studies with CS Students: Examining a Password-

Storage Study with CS Students, Freelancers, and Com-

pany Developers. In Proceedings of the 2020 CHI Con-

ference on Human Factors in Computing Systems, pages

1–13, 2020.

[23] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,

Emanuel von Zezschwitz, and Matthew Smith. "If

You Want, I Can Store the Encrypted Password": A

Password-Storage Field Study with Freelance Develop-

ers. In Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems, CHI ’19, pages

140:1–140:12, New York, NY, USA, 2019. ACM.

[24] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-

nau, Marco Herzog, Sergej Dechand, and Matthew

Smith. Why Do Developers Get Password Storage

Wrong?: A Qualitative Usability Study. In Proceed-

ings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’17, pages 311–328,

New York, NY, USA, 2017. ACM.

[25] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-

nau, and Matthew Smith. Deception Task Design in

Developer Password Studies: Exploring a Student Sam-

ple. In Fourteenth Symposium on Usable Privacy and

Security (SOUPS 2018), pages 297–313, Baltimore, MD,

August 2018. USENIX Association.

[26] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar,

Michael Backes, Charles Weir, and Sascha Fahl. A

Stitch in Time: Supporting Android Developers in Writ-

ing Secure Code. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications

Security, pages 1065–1077, 2017.

[27] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-

Chuan Yeh, Justin Cappos, and Yanyan Zhuang. It’s the

USENIX Association Seventeenth Symposium on Usable Privacy and Security 409

psychology stupid: how heuristics explain software vul-

nerabilities and how priming can illuminate developer’s

blind spots. In Proceedings of the 30th Annual Com-

puter Security Applications Conference, pages 296–305,

2014.

[28] Marten Oltrogge, Yasemin Acar, Sergej Dechand,

Matthew Smith, and Sascha Fahl. To Pin or Not to

Pin—Helping App Developers Bullet Proof Their TLS

Connections. In 24th USENIX Security Symposium

(USENIX Security 15), pages 239–254, 2015.

[29] Caitlin Sadowski, Emma Söderberg, Luke Church,

Michal Sipko, and Alberto Bacchelli. Modern Code

Review: A Case Study at Google. In Proceedings of the

40th International Conference on Software Engineering:

Software Engineering in Practice, ICSE-SEIP ’18, page

181–190. Association for Computing Machinery, 2018.

[30] Masha Sedova. Comparing Educational Approaches to

Secure programming: Tool vs.TA. In Thirteenth Sym-

posium on Usable Privacy and Security (SOUPS 2017),

2017.

[31] Dag IK Sjoberg, Bente Anda, Erik Arisholm, Tore

Dyba, Magne Jorgensen, Amela Karahasanovic, Es-

pen Frimann Koren, and Marek Vokác. Conducting

realistic experiments in software engineering. In Pro-

ceedings international symposium on empirical software

engineering, pages 17–26, Piscataway, NJ, USA, 2002.

IEEE, IEEE Press.

[32] Davide Spadini, Gul Calikli, and Alberto Bacchelli.

Primers or reminders?: The effects of existing review

comments on code review. In Proceedings of the

42nd International Conference on Software Engineering

(ICSE ’20), 2020.

[33] Jeffrey Stylos and Brad A Myers. The implications of

method placement on api learnability. In Proceedings

of the 16th ACM SIGSOFT International Symposium on

Foundations of software engineering, pages 105–112.

ACM, 2008.

[34] Mohammad Tahaei and Kami Vaniea. A survey on

developer-centred security. 2019 IEEE European Sym-

posium on Security and Privacy Workshops, pages 129–

138, 2019.

[35] David R Thomas. A general inductive approach for

analyzing qualitative evaluation data. American journal

of evaluation, 27(2):237–246, 2006.

[36] Tyler W Thomas, Madiha Tabassum, Bill Chu, and

Heather Lipford. Security During Application Devel-

opment: An Application Security Expert Perspective.

In Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems, pages 1–12, 2018.

[37] Sven Türpe, Laura Kocksch, and Andreas Poller. Pen-

etration Tests a Turning Point in Security Practices?

Organizational Challenges and Implications in a Soft-

ware Development Team. In Twelfth Symposium on

Usable Privacy and Security (SOUPS 2016), 2016.

[38] Charles Weir, Awais Rashid, and James Noble. How to

improve the security skills of mobile app developers?

comparing and contrasting expert views. In Twelfth

Symposium on Usable Privacy and Security (SOUPS

2016), 2016.

[39] Chamila Wijayarathna and Nalin AG Arachchilage. Am

I Responsible for End-User’s Security? Baltimore, MD.

USENIX Association.

[40] Chamila Wijayarathna and Nalin AG Arachchilage.

Why Johnny Can’t Store Passwords Securely? A Us-

ability Evaluation of Bouncycastle Password Hashing.

In Proceedings of the 22nd International Conference

on Evaluation and Assessment in Software Engineering

2018, pages 205–210, 2018.

[41] Jing Xie, Heather Lipford, and Bei-Tseng Chu. Eval-

uating interactive support for secure programming. In

Proceedings of the SIGCHI Conference on Human Fac-

tors in Computing Systems, pages 2707–2716, 2012.

[42] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-

Padilla, and Matthew Smith. Helping Johnny to An-

alyze Malware: A Usability-Optimized Decompiler and

Malware Analysis User Study. In Security and Privacy

(SP), 2016 IEEE Symposium on, pages 158–177, San

Jose, CA, USA, 2016. IEEE, IEEE.

A Survey

1. Thank you very much for your interest in our study. We

are researchers from the University of Bonn. We are

investigating the process of code reviewing for software

developers. By taking part in our study you will help

us understand how developers explore issues in source

code written by other developers.

Since we will be showing you code snippets please make

sure to participate in the survey using your computer

instead of a mobile device.

2. You and your colleagues are developing a social network-

ing website to share pictures with family and friends.

People need to register to this website in order to share

their pictures.

The front end has already been developed using the

Model-view-controller (MVC) architectural pattern. A

colleague of yours committed the following class and

410 Seventeenth Symposium on Usable Privacy and Security USENIX Association

you have been asked to do a code review for it, before it

gets accepted and released.

The class implements a registration functionality in the

web application: a user with the following attributes

(email, name, gender, birth date, username and password)

is stored in the database.

Please review the snippet as you would for a com-

pany. You get to decide if this code is deployed or if it

goes back to the developer for improvement. In both

cases please explain your decision. You can review

the code manually or use tools if you prefer. (Prompt-

ing: Please ensure that the user password is stored

securely.)

[CODE SNIPPET]

3. What did you check for? [Text box]

4. Please write your review for your colleague. Please sug-

gest actions for all issues. [Text box]

5. Do you approve the release of the code?

• The code has passed the review. The code can be

released

• The code can be released but the issues mentioned

above need to be fixed for the next update.

• Code did not pass review, please fix issues as men-

tioned above.

6. Did you check for security? [Yes; No]

7. Did you ensure that the user password was stored se-

curely? [Yes; No]

8. Can you please explain what hashing and salting for

passwords is? [Text box]

9. How did you review the code snippet? [Manually; Using

the following tools: [Text box]

10. In the past I have reviewed code written by others. [Yes;

No]

11. If Yes: How many times have you reviewed code written

by others in the past year? [Text box]

12. What percentage of your code reviewing time do you

dedicate to security? [Text box]

13. What percentage of your programming time do you ded-

icate to security? [Text box]

14. I have a good understanding of security concepts. 1 -

Strongly Disagree - 7 Strongly Agree

15. Please rate the following items: 1- Never - 7 Always

• How often do you ask for help when faced with

security problems?

• How often are you asked for help when others are

faced with security problems?

16. I feel responsible for the security of end-users when

writing code. 1 - Strongly Disagree - 7 Strongly Agree

17. I feel responsible for the security of end-users when

reviewing code. 1 - Strongly Disagree - 7 Strongly Agree

18. Please enter your age: [Text box]

19. Please select your gender. [Male; Female; Prefer not

say; Prefer to self-describe: Text box]

20. What is your current occupation? [Freelance developer;

Industry developer; Freelance tester; Industry tester;

Academic researcher; Undergraduate student; Graduate

student; Other:]

21. What type(s) of software do you develop/test? (Multiple

answers possible) [Web applications; Mobile/App appli-

cations; Desktop applications; Embedded Software En-

gineering; Enterprise applications; Other (please spec-

ify):]

22. In which country do you mainly work / study? [Text box]

23. How many years of experience do you have with soft-

ware development in general?

24. How many years of experience do you have with Java

development?

25. How many people work in your team? Please enter 1 if

you work on your own.

26. Please select what is more important to you. [Function-

ality - Security (Slider between both, Middle: Equally

important)

1 main{

2 print(func("hello world"))

3 }

4

5 String func(String in){

6 int x = len(in)

7 String out = ""

8 for(int i = x-1; i >= 0; i--){

9 out.append(in[i])

10 }

11 return out

12 }

Figure 6: Test for software developing skills [11]

27. Please select the returned value of the pseudo code above

[see Figure 6]:

USENIX Association Seventeenth Symposium on Usable Privacy and Security 411

• hello world hello world hello world hello world

• world hello

• hello world

• hello world 10

• HELLO WORLD

• dlrow olleh

28. As a non-profit academic institution we are interested

in offering fair compensation for your participation in

our research. How do you rate the payment of the study?

[Way too little; Too little; Just right; Too much; Way too

much;]

29. How many minutes did you actively work on this survey?

30. Thank you for taking part in our study! We really appre-

ciate your time and effort. We hope our results will help

improving security awareness in code reviewing. If you

have any comments or suggestions, please leave them

here and then please click on "Continue" to complete the

survey.

B Play Book

During the study we conducted a play book to ensure all

participants received the same information. When a seller

contacted us, there were three cases: the offer is the correct

amount, the offer is too expensive or the offer is too cheap.

• Hello! Thank you for your interest. We would be de-

lighted to have you participate in our java code reviewing

study. Do you have experience programming in Java?

If you agree to proceed we would send you a link, from

which you can then complete our online survey. We

expect the survey to take no more than two hours. To

complete the survey you would have a week. Would you

like to proceed? Kind regards, XXX

• If the offer was not $50 we added the following question:

• If you would like to participate could you increase your

payment requirement and send us a custom offer of $50?

or

We do however have a budget of $50 per participant. If

you would like to participate could you send us a custom

offer of $50?

• Once the participants had sent us a custom offer, they

received the answer:

Thank you! I will confirm your offer and then send you

a link to the survey

• When you have completed the survey, we would appreci-

ate it if you do not write any specific comments regarding

the survey in your rating of us on Fiverr. As the study

is currently ongoing this can lead to inconsistent results.

Thank you for your understanding!

Below is a list of questions we were asked and our re-

sponses to them (P = Participant):

• P: I have very little programming experience in Java

albeit.

Us: We are looking for people with experience program-

ming in Java. If you feel you fulfill this requirement you

are welcome to take part.

• P: Is clicking on that link mean that I must start?

Us: You should be able to continue where you left off,

if you happen to want to continue the survey at a later

point.

• P: I hope that the answers are to be in English?

Us: Yes the survey is in English.

• P: I don’t even know what is the problem and what is it

about your research?

Us: This is a Java code reviewing study. You will be

required to complete a code review and then answer

some questions.

• P: Why is that obligatory? (to get paid)

Us: It is important for the study that each participant is

treated the same.

• P: How many files / classes are and LOC (Lines of

Codes) will be there in the code base? (roughly)

Us: There are three files, two with roughly 100 lines of

code and the third with 15.

• P: Do these two hours have to be without intervals?

Us: You’re welcome to take breaks as and when you

need them.

• P: Just to get to know, do we need to do the survey

straightaway for 2 hours or can we save the part that we

have done and continue it later?

Us: You don’t need to complete the survey immediately.

You can complete it at any point in the week after your

offer is accepted.

• P: No personal information?

Us: All data will be processed pseudonymously and

stored anonymized after the study; there will be no iden-

tifying information published in any form.

• P: Seems a little sketchy to be honest, I’d like to make

sure this is legit.

Us: If you would like to participate could you send us a

custom offer of $50? We would then accept your offer

and send you the link, thus ensuring no risk for you.

412 Seventeenth Symposium on Usable Privacy and Security USENIX Association

• P: I wish to complete your online survey but Unfortu-

nately paying you $50 is stopping me to participate.

Us: You would be receiving the money.

• P: No I don’t have any experience in Java.

Us: Ok, thank you for your response!

• P: But how you know I take a survey and how you pay

me?

Us: You have sent us an offer of $50. I would confirm this

offer and send you a link to our survey. Upon completion

you will get paid.

• P: But I don’t have any project if I don’t deliver how it

is possible to send money?

Us: You have sent us an offer. As mentioned, I would

confirm this offer, send you the link to our survey, which

you would then complete. You would then confirm that

you have delivered the service. We would then check

that you have completed the survey. If this is the case,

we will confirm completion and you will receive your

payment.

• P: And what is the deadline? Is it limited by time?

Us: You have a week to complete the survey.

• Participant claims to be finished, but the response is not

submitted.

Us: We have not received your response. Can you check

that you have completed the survey?

• Participant mentioned word ’security’ in review.

Us: Thank you very much for your kind review. We have

however noticed that you mentioned the word "security"

in your review. As this study is ongoing, we would rather

not have any comments regarding security on our profile.

Is it possible you could change your review message?

Kind regards, XXX

• P: They are asking for my review will you give me re-

view otherwise I will mention that you haven’t given me

review after all work.

Us: I have completed your review already.

• P: Please tell me and type here what review you want

from me as seller.

Us: Telling you what to review us is not in compliance

with Fiverr’s terms and conditions. We would appreciate

it if you do not mention any specifics to the survey, but

you are welcome to comment on the experience as a

whole working with us.

• P: Do you have something new for me?

Us: I’m afraid we don’t have any more work for you at

this time.

• P: What was the survey for? (After completion)

Us: We are researchers working in the field of software

usability. The survey is to be used to better understand

how freelancers work and what benefits and disadvan-

tages a code review has.

• By reapplication: Thank you for your interest in our

survey, unfortunately we need new participants for the

survey.

• Review: Very good communication, delivered on time.

It was nice working with *name*!

C Code Snippets

Participants were shown at random one of three insecure code

snippets. The code snippets for the study can be found here:

Plaintext

https://gist.github.com/u-cec/

54e79635ec44234f8aa8ae4514d3d9e9

MD5

https://gist.github.com/u-cec/

d25963ac45569962fca2291661f6e2f8

Base64

https://gist.github.com/u-cec/

3fedf84f64918d9cafab61042cee8658

D Evaluation of Participants’ Code Reviews

Table 4 shows an overview of the evaluation of participants’

submissions.

E Participants’ Review Criteria

Criteria mentioned by participants are summarized in Table 5.

F Found Password Storage Issue

Participants who reported issues with the code are summa-

rized in Table 6.

USENIX Association Seventeenth Symposium on Usable Privacy and Security 413

Participant Code Snippet Prompted Survey duration [minutes]* Time for review [minutes] Found password storage issue Ready for release? Review word count

NB1 Base64 n 31 18 0 ✗ 127

NB2 Base64 n 86 26 0 ✗ 56

NB3 Base64 n 24 4 0 ✗ 17

NB4 Base64 n 316 44 0 X(!) 87

NB5 Base64 n 34 14 0 ✗ 128

NB6 Base64 n 29 12 0 ✗ 205

NB7 Base64 n 23 11 0 ✗ 63

NB8 Base64 n 36 27 0 ✗ 261

NM1 MD5 n 6119 30 0 ✗ 41

NM2 MD5 n 12 3 0 X(!) 33

NM3 MD5 n 326 3 0 ✗ 443

NM4 MD5 n 62 38 0 ✗ 177

NM5 MD5 n 83 50 0 X 117

NM6 MD5 n 254 195 0 X(!) 79

NM7 MD5 n 85 49 0 X(!) 40

NP1 Plaintext n 83 37 1 X(!) 74

NP2 Plaintext n 151 118 0 ✗ 228

NP3 Plaintext n 37 19 0 ✗ 73

NP4 Plaintext n 3511 582 0 ✗ 171

NP5 Plaintext n 40 29 1 ✗ 157

NP6 Plaintext n 13 3 0 X(!) 24

PB1 Base64 p 206 102 1 ✗ 265

PB2 Base64 p 934 46 1 ✗ 232

PB3 Base64 p 87 50 0 X(!) 28

PB4 Base64 p 12 2 0 X(!) 6

PB5 Base64 p 2407 132 0 ✗ 77

PB6 Base64 p 9045 38 0 X(!) 82

PB7 Base64 p 68 41 0 X(!) 30

PB8 Base64 p 198 122 0 X(!) 70

PM1 MD5 p 25 14 1 ✗ 82

PM2 MD5 p 5798 1 0 X 45

PM3 MD5 p 35 14 0 ✗ 45

PM4 MD5 p 129 105 1 X(!) 148

PM5 MD5 p 6153 55 1 X(!) 47

PM6 MD5 p 66 15 1 ✗ 84

PM7 MD5 p 39 15 1 ✗ 49

PP1 Plaintext p 23 3 1 ✗ 25

PP2 Plaintext p 2490 2 1 X(!) 42

PP3 Plaintext p 4444 67 1 X(!) 87

PP4 Plaintext p 25 12 1 ✗ 85

PP5 Plaintext p 76 38 0 ✗ 107

PP6 Plaintext p 198 14 0 X(!) 89

PP7 Plaintext p 53 5 0 ✗ 36

PP8 Plaintext p 5910 21 0 X(!) 68

Table 4: Evaluation of participants’ code reviews

* Some participants started the survey and probably left it for some days since the deadline was to complete it within one week. ✗: Code did not pass review,

please fix issues as mentioned above. X(!): The code can be released but the issues mentioned above need to be fixed for the next update.

X: The code has passed the review. The code can be released. Found password storage issue: insecure password storage was mentioned as an issue in the

review.

0%

0%

91%

91%

9%

9%

I feel responsible for the security of end−users
when reviewing code.

I feel responsible for the security of end−users
when writing code.

100 50 0 50 100

Percentage

Response
1 − Strongly Disagree

2

3

4

5

6

7 − Strongly Agree

Figure 7: The responses on whether the participants feel responsible for security while code reviewing and writing (group:

prompted)

414 Seventeenth Symposium on Usable Privacy and Security USENIX Association

Criteria Total Participants

Count Prompted Not prompted

Implementation

Functionality 6 PM4, PB6 NM5 NB6, NB1, NP1

Logic 8 PM2, PM3, PP5, PB7 NB4, NP3, NB6, NM6

Maintainability 1 NB2

Performance / Efficiency 2 PB5 NP4

Error Handling 14 PB1, PP3, PB3, PM3, PM5, PP5, PM7 NB1, NM2, NM4, NM5, NB6, NP4, NB8

Quality Assurance 1 NM3

Unit tests 1 PB7

Testing and Bugs Bugs/ Errors in the code 3 NM1, NM5, NP4

Syntax 10 PM1, PB3, PM4, PP5 PB7, PP8, PM7 NM6, NP1, NP3

Code standards 2 PB1 NB1

Code format 3 PB2, PP5 NM4

Correct usage of get and set methods 9 PM1, PB3, PM5, PP5 NM2, NP1, NB3, NB4, NB5

Model view controller architecture 3 NM1,NP2, NB8

Imported Packages and Libraries 5 PP3, PB6 NP2, NB1, NB8

Standards and Validation Input validation 6 PM6, PP7, PP5 NB6, NM7, NM2,

Null checks 1 PM6

Style issues 7 PB2, PM4, PP5, PP8 NB1, NP3, NP4, NB7

Duplicated/ Unused code 2 PB1,PB2

Code complexity 4 PM4, PP5, PB5, PB7

Readability 5 PM4, PB5 NM1, NM4, NM5

Comments 5 PB1, PM4, PB7 NB4, NP4

Security 10 PB1, PP2, PP8, PM7, PM4, PP4 NM4, NP3, NP4, NP6

Security Password Storage Security 11 PP1, PM1, PP2, PB2, PB6, PM6, PB7, PB8,

PM7

NP1, NM4,

Data Security 4 PB1, PP4, PM7 NM4

Table 5: All criteria mentioned by participants

Found Total Participants

Issue Count Prompted Not prompted

Secure password storage 13 PP1, PM1, PB1, PP2, PB2, PP3, PM4, PP4,

PM5„ PM6, PM7

NP1, NP5

Found Password Storage Issue Password validation 3 PP4, PB8 NM3

Password encryption 4 PP1, PP2, PP3 NP5

SQL and JAR injections 1 PB6

Password storage to complex 1 PM3

Security Score
Storage sufficient 3 PB8 NM4, NM5

Function issue 5 PM1, PM4, PP4, PM5, PM6

Distraction tasks
Logical Mistake 8 PM3, PP5, PP7 NM3, NM4, NB5, NP4, NB8

Exception swallowing 12 PM4, PB1, PB3, PM3, PM7, PP5 NB1, NB2, NB6, NB8, NM4, NP3

Table 6: Issues found by participants

0%

10%

95%

85%

5%

5%

I feel responsible for the security of end−users
when reviewing code.

I feel responsible for the security of end−users
when writing code.

100 50 0 50 100

Percentage

Response
1 − Strongly Disagree

2

3

4

5

6

7 − Strongly Agree

Figure 8: The responses on whether the participants feel responsible for security while code reviewing and writing (group:

non-prompted)

USENIX Association Seventeenth Symposium on Usable Privacy and Security 415

4% 78%17%I have a good understanding of security concepts.

100 50 0 50 100

Percentage

Response
1 − Strongly Disagree

2

3

4

5

6

7 − Strongly Agree

Figure 9: The responses on whether the participants reported to have a good understanding of security concepts (group: prompted)

5% 76%19%I have a good understanding of security concepts.

100 50 0 50 100

Percentage

Response
1 − Strongly Disagree

2

3

4

5

6

7 − Strongly Agree

Figure 10: The responses on whether the participants reported to have a good understanding of security concepts (group:

non-prompted)

416 Seventeenth Symposium on Usable Privacy and Security USENIX Association

	Introduction
	Related Work
	Developer and Password Studies
	Code-reviewing Studies

	Methodology
	Survey
	Code Snippets
	Participants
	Evaluation
	Security
	Qualitative
	Quantitative

	Ethics
	Limitations

	Results
	Qualitative Analysis
	Participants' Review Criteria
	Found Password Storage Issue
	Security Score
	Distraction Tasks
	Ready for Release?
	Participants' Definition of Hashing and Salting
	Security Responsibility

	Quantitative Analysis
	Effect of Prompting on the Word Count
	Effect of Prompting on Finding the Password Storage Issue
	Effect of Experience on Finding the Password Storage Issue
	Effect of Different Insecure Code Snippets on Finding the Password Storage Issue
	Time for Security

	Discussion
	Conclusion
	Survey
	Play Book
	Code Snippets
	Evaluation of Participants’ Code Reviews
	Participants' Review Criteria
	Found Password Storage Issue

