
This paper is included in the Proceedings of the 
Sixteenth Symposium on Usable Privacy and Security.

August 10–11, 2020
978-1-939133-16-8

Open access to the Proceedings of the 
Sixteenth Symposium on Usable Privacy 

and Security is sponsored by USENIX.

Replication: On the Ecological Validity 
of Online Security Developer Studies: 

Exploring Deception in a Password-Storage 
Study with Freelancers

Anastasia Danilova, Alena Naiakshina, and Johanna Deuter, University of Bonn; 
Matthew Smith, University of Bonn, Fraunhofer FKIE

https://www.usenix.org/conference/soups2020/presentation/danilova



Replication: On the Ecological Validity of Online Security Developer Studies:

Exploring Deception in a Password-Storage Study with Freelancers

Anastasia Danilova

University of Bonn

danilova@cs.uni-bonn.de

Alena Naiakshina

University of Bonn

naiakshi@cs.uni-bonn.de

Johanna Deuter

University of Bonn

johannadeuter@posteo.de

Matthew Smith

University of Bonn, FKIE Fraunhofer

smith@cs.uni-bonn.de

Abstract

Recruiting professional developers for studies can be chal-

lenging and one major concern for studies examining secu-

rity development issues is their ecological validity—does the

study adequately reflect the real world? Naiakshina et al. [28]

examined the ecological validity of a password storage study

conducted with students [29, 30] by hiring freelancers from

Freelancer.com. In the hope of increasing the ecologically

validity, Naiakshina et al. used a deception study design

wherein freelance developers were hired for a regular job us-

ing a company front created for the study, instead of openly

telling the freelancers that they were taking part in a study.

Based on their results, Naiakshina et al. propose the use of

online freelancers to be examined further, to supplement other

recruitment channels such as CS students and GitHub users.

The deception in their study was used with the aim that results

would reflect the real work of online freelancers. However,

deception needs to be used with careful consideration, which

can entail additional study design work and negotiations with

ethical oversight bodies. In this paper, we take a closer look

at the deception used in Naiakshina et al.’s study. Therefore,

we replicate Naiakshina et al.’s work but announce and run it

as a study on Freelancer.com. Our findings suggest that for

this password storage study deception did not have a large ef-

fect and the open recruitment without deception was a viable

recruitment method.

Copyright is held by the author/owner. Permission to make digital or hard

copies of all or part of this work for personal or classroom use is granted

without fee.

USENIX Symposium on Usable Privacy and Security (SOUPS) 2020.

August 9–11, 2020, Virtual Conference.

1 Introduction

Security is an issue many software developers struggle [2,

5, 11, 28–30, 47]. User studies with developers are a use-

ful tool to examine misconceptions and issues of developers

when faced with security issues. While human computer

interaction (HCI) research has made great progress in in-

vestigating the security behavior of end users, it still lacks

methodological research for the human factor of software de-

velopers [4]. One major issue with software developers is

their limited availability as subjects for research studies. Pro-

fessional developers often cannot set aside time, may not be

locally available or have hourly rates that researchers cannot

afford [3–5, 24, 25, 38, 49]. An option to recruit profession-

als for studies is cooperating with companies as can be seen

in [13, 15]. However, it can be difficult to find companies

willing to join such studies. Reasons we have encountered

are, that companies are hesitant to allocate time of their de-

velopers to a study, both for time and cost reasons, as well as

worries about disclosure of information about their company

as part of the publication process. Therefore, many previous

security developer studies were conducted with computer sci-

ence (CS) students [3,8,29–31,49] or developers recruited on

GitHub [5, 20, 35, 47, 48]. To supplement these recruitment

options, Naiakshina et al. [28] proposed to use platforms such

as Freelancer.com for developer recruitment.

In 2017 and 2018, Naiakshina et al. [29, 30] conducted a

qualitative and a quantitative password-storage study with CS

students to provide more insights into developer’s security

behavior. The participants were asked to complete the user

registration functionally of a university social networking

platform. Half the participants were prompted for secure pass-

word storage in the task, while the other half were merely told

the study is about API usability (non-prompted). The results

showed that not a single participant stored user passwords

securely without being prompted. Some students, however,

noted that they would have saved the user passwords securely

if they had been working on a project for a real company. In

order to find out whether the previous results were a study

USENIX Association Sixteenth Symposium on Usable Privacy and Security    165



CS Students [29, 30] Freelancers [28] This Study: Replication of [28] with Freelancers

Independent Variables (IV) IV1: Security prompting (yes/no) IV1: Security prompting (yes/no) IV1: Security prompting (yes/no)

IV2: Framework (JSF/Spring) IV2: Payment (100/200 euros) IV2: Payment (100/200 euros)

IV3: Framework (JSF/Spring)

Study Context and Task University researchers Start-up University researchers

University social networking platform Sports photo social networking platform Sports photo social networking platform

Study Deception No Yes No

Recruitment University Individually on Freelancer.com Project on Freelancer.com

Post Security Request No SecRequest-P if plain text submission SecRequest-P if plain text submission

SecRequest-G if not implemented industry security standards

Table 1: Overview of password-storage studies for most relevant aspects.

artifact, Naiakshina et al. conducted a follow-up study with

freelancers [28], which they did not announce as an academic

study but as a real project. In the corresponding pilot study,

the authors found that owing to the university context of task

from the previous study, freelancers believed that they were

working on university homework and also did not implement

any security. To avoid this potential study bias, the authors

invested additional study design work to provide a more realis-

tic scenario to make the freelancers believe they were working

for a real company and the code would be used in the wild.

First, they removed the university social network context and

posed as a start-up that had just lost a developer in their team

and was searching for a new one. The job freelancers were

asked to complete was to create code for a social networking

platform for a sports photo sharing website. To make the

scenario more believable, the researchers created a fake multi-

page online web presence for the start-up. Second, the authors

had to manually contact freelancers individually, instead of

advertising the job on the service, and letting the freelancers

apply for the job. The latter would have made recruitment

easier, however, the Freelancer.com platform shows who has

been hired for projects advertised in this way and pilot studies

showed high dropout rates. This was due to freelancers being

confused and suspicious about a single job being given to

many freelancers. However, using the deception study de-

sign, Naiakshina et al. concluded that the CS students and the

freelancers behaved similarly with regard to their password

storage practices in this particular study setup and thus, sug-

gested Freelancer.com as a promising platform for developer

recruitment which warrants further examination.

In this paper, we specifically want to examine the use of

deception in the context of this study. Deception can be a

useful tool, if disclosing the study purpose would lead to a

significant change in behavior in the participants, e.g., Na-

iakshina et al. were concerned that freelancers would not

implement security in the same way in a study setting as they

would for a real customer. However, deception should be used

only after careful consideration. Three issues are relevant in

our context 1) One of the fundamental principles of human

subjects research is informed consent and deception can im-

pact this principle. 2) If deception is used, participants who

take part in multiple studies or have heard of deceptive stud-

ies might second guess what the study is about, potentially

affecting their behavior in an unknown manner. 3) Deception

studies can require additional study design work, e.g., in the

case of Naiakshina et al. the creation of a fake company web

presence and more elaborate scenarios.

In order to gain more insights into study methodology and

ecological validity of developer studies, we replicated the

freelancer study of Naiakshina et al. [28] except for the use

of deception. While the study task was kept the same, we

created a new profile on Freelancer.com, where we introduced

ourselves as a university group conducting scientific research

and the job as a study. Due to this we were able to post

and manage our study as a single project and manage all

freelancers from there, reducing the additional study design

work needed to run the study.

In addition to examining the effect of deception, we add

further insights into the effect of different application pro-

gramming interfaces (API) offering cryptographic libraries.

For this we replicated the comparison of two frameworks JSF

and Spring, as examined in the studies [29, 30],

Finally, we investigated whether providing participants

with password storage guidelines has an effect on the se-

curity of the submitted solutions. Table 1 provides an

overview of the previous lab studies with computer science

students [29, 30], the freelancer study [28], and the present

study.

2 Related Work

There is a wide variety of studies investigating end-user pass-

word creation, password creation rules and their effects and

password usage [11, 16, 22, 23, 26, 34, 36, 37, 39, 42–45]. Al-

though developers play an important role in secure password

storage too, rather little work has been done with them. To

offer more insights into developers’ security behavior, Na-

iakshina et al. conducted password-storage studies with CS

students and freelancers [28–30]. A detailed description of

the papers is available in the Introduction section. In order

to explore the necessity of study deception as done in [28],

we replicated the freelancer study of Naiakshina et al. by

announcing our study context to participants. Section 2.1 out-

lines the work conducted on the ecological validity of study

166    Sixteenth Symposium on Usable Privacy and Security USENIX Association



design. Section 2.2 provides an overview of security devel-

oper studies in general and in the context of password storage.

Finally, Section 2.3 summarizes studies conducted focusing

on freelancers.

2.1 Ecological Validity

Acar et al. [4] argued that the examination of ecological

validity–whether studies reflect the real world–is of great

importance. Most work in this field was primarily conducted

with end users. For example, Redmiles et al. [33] compared

field data with survey reported data about software updates

initiated with end users. They found that self-reported data in

some cases varied from field data.

Furthermore, Wash et al. [45] compared 134 self-reports of

end users’ password behavior with their actual behavior and

found only a weak correlation of self-reported intentions with

reality. In [46], Wash et al. aimed at finding out which security

behaviors were accurately self-reported by the end users. For

this, they collected survey responses and behavior data from

122 participants. The authors concluded that security self-

reports oftentimes do not reflect users’ actual behaviors, e.g.,

if the behavior involves awareness.

Fahl et al. investigated the ecological validity of a password

study [17]. They compared the study-observed behavior of

645 participants with their real-life password choices. They

conducted an online and laboratory research under priming

and non-priming conditions. The authors found that around

20% of the participants behaved differently in the study com-

pared to their real-life password behavior. They concluded

that ecological validity is an important criterion, as it can

reveal a high index of the irrelevance of laboratory studies to

the real-life behavior.

Simultaneously, Mazurek et al. [27] studied the guessability

of passwords used by members of a university in comparison

to passwords that were previously collected in experiments or

were leaked from low-value accounts. Having the same pass-

word policy, the authors found the real university passwords

to be more similar to the passwords from research studies than

when comparing university passwords to the leak passwords.

In order to increase the ecological validity of developer

studies, Stransky et al. [40] designed an online platform which

enables developers to participate in a study using their own

equipment and allows them to participate from anywhere

they would like to. The authors used the platform to conduct

two studies and found that participants created code that was

equally good as the code created in previous lab studies and

noticed that participants were willing to spend more time

when working online.

Finally, Naiakshina et al. [28–30] investigated whether

deception task design–prompting participants to secure pass-

word storage–would change their security behavior in com-

parison to non-prompting. The study results showed that

prompting has an effect on the security of participants’ so-

lutions. We replicated the freelancer study of Naiakshina

et al. [28] in order to explore what impacts removing the

deception emulating ecological validity might have.

2.2 Security Developer and Password Studies

Balebako et al. [7] conducted semi-structured interviews with

13 app developers. They investigated their view on security-

and privacy-related topics. Many participants stated that both

were part of their development process but that they were not

their top priority. The authors found that security and privacy

are positively correlated.

Acar et al. [3] invited 54 Android developers to take part

in a lab study comparing different kinds of resources (free

choice of resources, Stack Overflow only, official Android

documentation only, books only). The participants only using

Stack Overflow wrote significantly less secure code than the

others, while the ones using only books wrote significantly

less functional code than the others.

In a further study [2], Acar et al. compared the usability of

five different APIs. They asked 256 GitHub users to solve var-

ious tasks concerning symmetric and asymmetric encryption.

Twenty percent of the users who solved the task functionally

believed to have solved it securely while it was not. The

researchers recommended better documentation with secure,

easy-to-use code examples.

With regard to password policies, Bonneau and

Preibusch [12] analyzed 150 websites which offer free

user accounts for various purposes. They found a great

variety of security implementations. Websites with few

security-critical features had the worst security practices.

Other websites storing more sensitive data, such as financial

data, implemented better security.

In 2007, Prechelt [32] arranged a contest where teams of

web developers took part using different web development

platforms (Java EE, Perl, PHP). They all had 30 hours to

implement the same requirements for a web-based applica-

tion. Their results were compared along various factors like

usability, functionality and security. They found that PHP

was in many aspects “at least as safe” as the other platforms

and that it tended to have the smallest within-platform vari-

ations. Finifter and Wagner [18] conducted further analysis

on the code of [32]. The authors investigated the relation

between programming language and its number of vulner-

abilities and the frameworks’ support for security features

and number of vulnerabilities. They did not find a relation

between choice of programming language and application

security, but they noticed that the developers almost never

made use of the frameworks’ built-in security support, e.g.,

for password storage. Like Finifter and Wagner, we also in-

vestigated whether freelancers would make use of the Spring

frameworks’ built-in libraries for secure password storage.

In a further study, Acar et al. [5] invited 307 GitHub users

to work on security related tasks (e.g., password storage) in

USENIX Association Sixteenth Symposium on Usable Privacy and Security    167



Python and to take part in a survey afterwards. The authors

found a positive correlation between performance regarding

security and functionality and years of programming experi-

ence.

Another password-storage study was conducted by Wija-

yarathna and Arachchilage [47] with 10 developers. The

authors explored usability issues of the Bouncycastle API

to provide insights on how to develop, design and improve

security/cryptographic APIs. They identified 63 issues in the

SCrypt implementation of Bouncycastle.

2.3 Developer Studies with Freelancers

Ahmed and van den Hoven [6] discussed the freelancers’

responsibility and ability to cause harm. They pointed out

that most freelancers only do exactly what they are asked

to do, which can cause security issues with employers who

do not have a computer science background–an observation

which was also found in Naiakshina et al.’s studies with free-

lancers [28] and students [29, 30] indicating that this issue

cannot be reduced to freelancers only. Another problem

Ahmed and van den Hoven found was that freelancers use

malicious code from the Internet without testing it to ensure

functionality and security. The researchers wanted to encour-

age freelancers to accept their responsibility. In our study,

we acknowledge these aspects by providing participants pass-

word storage standard sources, if they submitted non-secure

solutions.

In a further study, Bau et al. [9] compared the websites

developed by start-up developers with websites they asked

freelancers from Elance.com and Freelancer.com to develop.

They wanted to investigate how the employment status, the

developer’s security knowledge and the programming lan-

guage influence web application security. Nineteen start-ups

and 8 freelance developers were invited and all of them were

interviewed and took part in a security quiz. Their analysis

showed that the code written by freelancers had more weak-

nesses than the code written by the start-ups. There was a

huge discrepancy between the freelancers’ security knowl-

edge and their implementations. Furthermore, they found that

code written in PHP had more injection vulnerabilities than

code written in other programming languages.

While Bau et al. referred to freelancers as being rather

unreliable, in another freelancer study, Yamashita and Moo-

nen [50, 51] conducted a study with 85 freelancers on code

smells and acknowledged the flexibility, the access to a wide

population, and the low costs of Freelancer.com. Further-

more, in contrast to Bau et al., Naiakshina et al. [28] reported

freelancers to be very dependable in their study. Most of the

subjects delivered their solutions within the time frame they

promised; they were also reliable in their communication and

showed a high interest in the study results.

3 Methodology

With the aim of improving the ecological validity of their

study, Naiakshina et al. [28] concealed the context of their

scientific research and hired freelancers for a “real project.”

The authors invested additional study design work into the

deception by creating a fake start-up with a web presence,

creating a fake profile on Freelancer.com, designing a task

description as authentic as possible and contacting and hiring

individual developers based on their skills.

To test whether similar results are achieved without the

use of deception, we conducted a replication-extension [10]

of Naiakshina et al.’s [28] freelancer study, which adopted

the study design from the original CS student studies [29,

30]. While we replicated the study of Naiakshina et al. with

freelancers [28], we also extended it by the methodology

(study announcement) and the framework variable, which we

adopted from the previous student studies [29, 30] as well as

an additional security request (see Table 1). The task was to

complete a Java registration functionality that facilitated the

storage of user properties (including user passwords) from a

web form in a database. We used the task description given

in [28] and hired participants from Freelancer.com. Similar

to the previous studies, prompting was one variable in our

study: half of the participants were tasked to securely store

the passwords while the other half was not explicitly asked to

do so.

When the project was published on Freelancer.com, the

participants bid on it, and we contacted them via private

messages. To communicate with the participants, we used the

playbook from [28] and extended it when new cases appeared.

The changes we made are given in the Appendix E. After

completing the programming task, participants were asked to

fill out an online survey to obtain their opinions on the used

frameworks, their demographics, and their feedback about

the task. In the following section, we provide a detailed

description of all the design changes we made in contrast to

the previous study [28].

3.1 Study Design Changes

Recruitment. One major change from the previous work was

the public posting of the project on the freelancer platform

as part of a scientific study. In the freelancer study of Naiak-

shina et al. [28], the researchers sent private messages with the

project offer to freelancers who had mentioned Java knowl-

edge in their profiles. Due to the limited filter features, the

researchers needed to manually inspect freelancers’ profiles

to verify whether they actually had the required knowledge.

Eighty of the 340 selected subjects did not have the required

knowledge. Additionally, the remaining 260 freelancers were

contacted by the researchers, but a total of 211 did not accept

the offer for different reasons, such as their lack of experience

or time. In our study, developers had to submit an application

168    Sixteenth Symposium on Usable Privacy and Security USENIX Association



for the project and thus, it was ensured that all the applicants

were available for the study. Our public announcement for

the study is available in the Appendix E.1.

Study Announcement. In the previous study, the re-

searchers presented themselves as a start-up company and

revealed their academic aims only at the end of the program-

ming task. To make the project as realistic as possible, the

original task presented in [29,30], needed to be changed from

a university setting to a company setting. The authors created

a fake company profile on Freelancer.com and a web presence

for that company and shared that with the subjects. While

we used the same task description as used in the previous

freelancer study, we omitted all the other steps and introduced

ourselves as academic researchers conducting a scientific

study.

Framework. While in the original freelancer study only

JSF was used, we randomly assigned the participants to use

either JSF or Spring as introduced in the previous student

studies [29,30]. The JSF participants had to implement secure

password storage on their own. In contrast, Spring offers

supporting libraries.

Security Requests. In their CS student studies, Naiakshina

et al. [29, 30] accepted the participants’ initial solutions and

evaluated them based on a security score. To sum up, partic-

ipants received a score of 0-7 points for security, based on

their implementation choices for the password storage secu-

rity, such as the hashing algorithm, salt generation, iterations

etc. (see Section 3.4). In the freelancer study, the authors

extended the security score and included a security request:

• SecRequest-P(laintext): If the submissions included

plain text password storage, subjects were asked to revise

their submissions and to securely store user passwords.

We adopted this procedure and extended it by a further secu-

rity request:

• SecRequest-G(uideline): If the security score of partici-

pants’ solutions was less than 6 points, we asked them

to store the passwords by following industry’s best prac-

tices.

As in the previous studies by Naiakshina et al., we ac-

cepted 6 points, instead of the full 7, for security, because

Springs’ default implementation of the bcrypt scores 6 points;

thus, no one received the full 7 points by using memory-hard

hashing functions. To investigate whether developers could

obtain the full 7 points when given the appropriate source, we

provided our participants with website links to the password

security guidelines of the Open Web Application Security

Project (OWASP) [1] and National Institute of Standards and

Technology (NIST) [21] for the SecRequest-G. The exact

wording and an illustrated procedure of the security requests

can be found in the Appendix A.

Compensation. In the freelancer study, Naiakshina et

al. [28] tested the impact of a payment variable on security by

recruiting subjects either with a payment of AC100 or AC200.

After revealing the study context, freelancers were invited to

fill out a survey for additional AC20. To allow researchers to

conduct scientific studies in an economical manner, we began

recruiting participants with a lower compensation amount of

AC120 for the project, including the programming task and

the survey. Naiakshina et al. did not find a significant effect

between the two payment levels on security. Therefore, after

facing difficulties to recruit over 18 participants with AC120,

we started offering AC220.1

Performance Based Payment. Based on the insights ob-

tained from our pilot study (see Section 3.2), our payment

method resembled the prior freelancer password storage

study [28] but was split into compensation milestones. Since

we included up to three possible iterations of the code re-

view and possible security requests, we divided the payment

process based on three milestones: AC50 for the first code

submission, AC50 for the final code release after our review

including possible security requests, and AC20 the survey com-

pletion. Accordingly, participants received AC100, AC100, and

AC20 respectively for each milestone for a payment of AC220.

3.2 Pilot Study

We recruited two freelancers via private messages to par-

ticipate in our pilot study. We offered AC220 to each. One

participant reported that he wanted further instructions instead

of just the mention of OWASP and NIST. Therefore, we in-

cluded the links to the security guidelines in the final study.

Since one participant appeared to be bothered by the requests,

we divided the payment process based on milestones to clearly

indicate that there were additional steps in our study. One par-

ticipant stated that it took him six hours to finish the task, but

he submitted the solution after six days. The other participant

worked for three and a half hours on the task. Since both the

participants reported to have finished the task in a relatively

short period of time we started the recruitment process with

AC120.

3.3 Participants

Recruitment. We posted our project in 5 iterations over a

time-span of almost two months. On each public project,

freelancers could place bids with their payment offer, which

ranged from AC120/AC220 to AC250. In total we received 101

applications, of whom we invited 73 to the study. Since

we limited our payment to AC220, participants with higher

bids were not invited to the study. In total, we excluded 28

applicants for requirement reasons, such as participants with

a bid higher than we offered (12), already participated in our

1As in the previous freelancer study [28], payment did not show an effect

on the decision to include security in the initial solution (FET: p = 0.55,

OR = 1.54, CI = [0.39, 6.19]). We also regarded the prompting vs. the

non-prompting group and did not find any significant effect in both cases.

USENIX Association Sixteenth Symposium on Usable Privacy and Security    169



General Information:

Gender Male: 32 Female: 11 NA: 0

Age min: 18, max: 46 mean: 28.95, median: 29 SD: 6.21

Country of Residence China: 11, India: 10, Pakistan: 6, Russia: 3,

Hong Kong: 1, The Netherlands: 1, Palestine: 1, Gaza: 1, New Zealand: 1, Romania: 1, Lithuania: 1, Vietnam: 1, Germany: 1, Malaysia: 1

Profession and Programming Experience:

Profession Freelance Developer: 28 Industrial Developer:12 Finance Professional:1

Employed full time: 1 Undergraduate full-time Student: 1

General Development Experience [years]∗ min: 1, max: 20 mean: 7.42, median: 7 SD: 4.47

Java Experience [years]∗ min: 1, max: 16 mean: 6.19, median: 5 SD: 3.69

* = There were no significant demographic differences between the groups.

Table 2: Demographics of participants (n = 43)

study (9), and other reasons (7), such as missing Java skills

in their profile or large time frames. Forty-three accepted our

study invitation and participated in the study.

The first 3 iterations were posted with a payment of AC120

and received a total of 60 bids from which we invited 46

freelancers to the study. Fourteen were removed for require-

ment reasons. Eight participants did not answer to the study

invitation and another 8 were not interested anymore after

reviewing the study material. Two wanted a higher payment

for the project, one had no Java skills, two declined without

seeing the study materials and one did not believe that we

were conducting a study. Finally, 24 agreed to participate

in our study. In the last 2 iterations, we offered a payment

of AC220. We received 41 bids and contacted 27 potential

participants, of which 19 agreed to participate in the study.

Fourteen freelancers were removed for requirement reasons.

Six participants did not respond and one told us he is not

interested anymore. Another participant wanted a higher pay-

ment for the project. In total 43 freelancers participated in our

study and were randomly assigned to one of the 4 conditions:

Spring-Prompting (FSP), Spring-Non-Prompting (FSN), JSF-

Prompting (FJP), and JSF-Non-Prompting (FJN).

Demographics. Table 2 summarizes the demographics of

our participants. While the demographics were comparable

to Naiakshina et al.’s [28] freelancers in general, more female

participants were involved in this study. 74% (32 of 43) were

male, and 26% (11 of 43) were female. Most of the partici-

pants claimed to be from China (11), India (10), and Pakistan

(6). Their ages ranged between 18 and 46 years (mean: 28.95,

median: 29, SD: 6.21). The general programming experience

of the participants ranged from 1 to 20 years (mean: 7.42,

median: 7, SD: 4.47). For Java, the programming experi-

ence was reported to be between 1 and 16 years (mean: 6.19,

median: 5, SD: 3.69). Almost all the participants reported

to be experienced in developing web applications (41 of 43)

and desktop applications (27 of 43). Thirty-eight participants

reported to have a university degree. The freelancers had the

option of indicating a minimum hourly wage in their Free-

lancer.com profile. The lowest rate among our participants

was AC5/hour, while the highest was AC46/hour (mean: 21.71,

median: 19, SD: 11.3, NA: 2).

3.4 Evaluation

Code Analysis. When releasing the milestones, we accepted

only functional solutions. We adopted the extended version of

the security scale [29] for the password storage security used

by Naiakshina et al. [28–30] to score the code submissions.

To sum up, we used a binary variable secure that indicated

whether a participant included at least some kind of secu-

rity. An ordinal variable security score was used to assess the

security of the solution according to the password security

scale [29] from 0-7; the security score considered the hash al-

gorithm, iteration count for key stretching and salt generation.

Submissions in which the user passwords were stored as plain

text in the database received 0 points. Base64 and symmetric

encryption are not suitable methods for secure password stor-

age, and thus, any submissions that included these methods

were rated being insecure (0 points). The security scale can

be found in the Appendix B.

Two coders independently reviewed all the programming

code submissions and evaluated them for security. Disagree-

ments were resolved by consulting a security expert and dis-

cussing the algorithm specifications. We had 7 cases of dis-

agreement, e.g., if one coder assessed the iterations incorrectly

or misread the hash length. However, after a discussion all

cases were resolved. With the rigid scoring system and the

strict algorithm specifications, full agreement was achieved

among the researchers.

Statistical Testing. We evaluated the same hypotheses as

Naiakshina et al. [28, 30]. We were able to examine the effect

of prompting vs. non-prompting (H-P1), framework (H-F1),

years of Java experience (H-G1), and password storage expe-

rience (H-G2) on security. We also used the same statistical

tests as in [28, 30]. All the tests on the same dependent vari-

able were corrected using the Bonferroni-Holm correction.

We denoted all corrected tests with “family = N,” where N

is the family size, and reported both the initial and corrected

p-values (cor-p). An additional description of the hypotheses

and a summary of our statistical analysis can be found in the

Appendix C and D.

Qualitative Analysis. The open-ended questions from the

follow-up survey were analyzed by two researchers using

inductive coding [41]. The two researchers independently

searched for codes categories and themes emerging in the raw

170    Sixteenth Symposium on Usable Privacy and Security USENIX Association



data. The codes were compared and the inter-coder agree-

ment was calculated by using the Cohen’s kappa coefficient

(κ) [14]. The agreement was 0.83. A value above 0.75 is

considered a good level of coding agreement [19]. We found

a large number of similar codes as in the previous freelancer

study [28]. In order to provide novel insights, we only report

new codes and findings in this work.

4 Limitations

Sample. Similar to Naiakshina et al. [28], our sample con-

sisted of developers from Freelancer.com. This sample is not

be representative for all developers. Other freelancer hiring

services could be used by other developers, and the results

may vary. Further, since we publicly announced the project,

participants needed to actively contact us, leading to a possi-

ble self-selection bias.

Recruitment Payment. We used two payment levels to

recruit participants. This might have led to a self-selection

bias. However, we tested the effect of payment on security

in the initial solution and did not find any significant effect

between both payment levels.

Deception. Similar to Naiakshina et al.’s previous pass-

word storage studies, this work examined the prompting vs.

non-prompting effect in the task description. This resulted

in concealing the security-focused research from half of our

participants. However, due to our security requests, partici-

pants were able to improve their submissions. We received

only positive feedback from our participants.

Generalizability. Finally, our findings are based on a sin-

gle example study and thus further studies are needed to see

if our results replicate in other types of studies.

5 Ethics

The institutional review board of our university approved our

project. The participants were sent a link to a consent form in

the first message of the conversation. We informed them of

our data-storage policies and that they could withdraw their

data at any time. To treat all the participants equally, we

compensated the participants who had initially been offered a

lower pay amount (AC120) with additional AC100 at the end of

our study. Thus, all our participants received AC220 for their

efforts.

6 Results

In this section, we present an analysis of the present study.

Additionally, we compare the results of the present study with

results from the previous studies [28, 30]. To enable this

comparison, we investigated the effect of the same factors on

whether participants decided to store user passwords securely

in the database considering the initial submissions. Further,

we compared submissions from the previous freelancer sam-

ple [28] with our sample.

6.1 Security

As in the previous freelancer study [28], our participants used

three techniques to store user passwords in the database: (1)

hashing (+ salting); (2) symmetric encryption; and (3) Base64

encoding. We rated the solutions according to the security

scale introduced in Section 3.4.

Table 3 shows the summary of the initial password stor-

age solutions and the solutions handed in after SecRequest-P

(in bold). To submit their initial solutions, participants took

on average 4 days (min: 2h 20 min, max: 29 days, median:

2 days, SD: 5.4 days). In total we received 23 non-secure

and 20 secure initial solutions from our 43 participants. Sev-

enteen of the 23 participants with non-secure submissions

received SecRequest-P as they stored the user passwords in

plain text. Most of these requests were sent to non-prompted

participants (15/17). Including security prompting in the ini-

tial task description meant that there was (almost) no need

to remind participants not to save passwords in plain text.

For SecRequest-P, they needed on average 1.8 days (min: 15

min, max: 19 days, median: 2h 30 min, SD: 4.4 days). After

SecRequest-P all participants except one at least hashed the

user passwords.

Overall, 25 participants received SecRequest-G because

their first or second submission achieved less than 6 points on

the security scale. For SecRequest-G, participants needed on

average 2 days (min: 15 min, max: 19 days, median: 1 day,

SD: 3.7 days). We provide a deeper analysis of submissions

after SecRequest-G in Section 6.5.

Participants needed on average 5.8 days for their final sub-

missions (min: 2h 20 min, max: 32 days, median: 3 days,

SD: 7.9 days). In contrast to the previous work [28], we

wanted to have a more accurate time specification. Thus, we

asked participants in the survey how much time they actually

needed to finish the task. On average, they stated that it took

them 14 hours and 30 minutes to complete the task (min: 1 h,

max: 72 h, median: 10 h, SD: 14 h 50 min).

6.2 Prompting effect (H-P1)

As done with all the previous studies on password storage of

Naiakshina et al. [28–30], we examined the effect of prompt-

ing for security in the task. We also found a significant effect

of prompting on the security of participants’ submissions

(FET: p = 0.006*, cor− p = 0.01*, OR = 6.51, CI = [1.51,

33.18], family = 2). The majority of non-prompted partic-

ipants submitted a non-secure solution (16 of 21); only 5

participants considered security. Of the 22 prompted partici-

pants, 15 at least hashed the passwords.

USENIX Association Sixteenth Symposium on Usable Privacy and Security    171



Participant Prompting Framework Payment Working

Time

Include

SecRequest-P

Active

Working

Security

Requests

Function Length

in bits

Iteration Salt Secure Score Copied

FJN1 0 JSF 120 3 Days 3 Days 7h P + G SHA-1 160 1 0/1 0/2

FJN2 0 JSF 120 3 Days 2 Days 4h P bcrypt 184 210 SR 0/1 0/6

FJN3 0 JSF 120 18 Days 2h 30min 11h P + G MD5 128 1 0/1 0/1 X

FJN4 0 JSF 120 3 Days 8h PBKDF2 (SHA-512) 512 20 000 SR 1 6

FJN5 0 JSF 220 2 Days 30min 12h P + G MD5 128 1 0/1 0/1

FJN7 0 JSF 120 3 Days 25h G MD5 128 1 1 1

FJN8 0 JSF 120 7 Days 4h G PBKDF2 (SHA-512) 512 65 536 St 1 5

FJN9 0 JSF 220 12 Days 1 Day 30h P + G SHA-1 160 1 0/1 0/2

FJN10 0 JSF 220 3 Days 8h G pgCrypto(xdes) 64 725 pgC 1 3

FJN11 0 JSF 220 2h 20min 4h bcrypt 184 210 SR 1 6

FJN12 0 JSF 220 2 Days 35min 8h P + G MD5 128 1 0/1 0/1

FJP1 1 JSF 220 1 Day 5h bcrypt 184 210 SR 1 6

FJP2 1 JSF 120 3 Days 48h G sym. Encryption 0 0

FJP3 1 JSF 120 1 Day 10h G PBKDF2 (SHA-1) 128 65 536 SR 1 5

FJP4 1 JSF 220 1 Day 18h bcrypt 184 214 MR 1 6 X

FJP5 1 JSF 120 6 Days 16h PBKDF2 (SHA-1) 160 20 000 SR 1 6 X

FJP6 1 JSF 120 2 Days 3h G MD5 128 1 1 1 X

FJP7 1 JSF 120 3 Days 15min 10h P + G MD5 128 1 0/1 0/1 X

FJP8 1 JSF 120 4h 1h G MD5 128 1 1 1 X

FJP9 1 JSF 120 12 Days 60h G Base64 0 0

FJP10 1 JSF 120 1 Day 12h G sym. Encryption 0 0

FJP11 1 JSF 220 2 Days 10h G sym. Encryption 0 0

FSN1 0 Spring 120 3 Days 5h 15h P + G SHA-512 512 1 SR 0/1 0/5

FSN2 0 Spring 220 8h 30min 20min 4h P bcrypt 184 210 SR 0/1 0/6

FSN3 0 Spring 120 7 Days 25min 10h P MD5 128 1 0/1 0/1

FSN5 0 Spring 120 1 Day 6h G sym. Encryption 0 0

FSN6 0 Spring 120 13 Days 19 Days 30h P bcrypt 184 212 SR 0/1 0/6

FSN7 0 Spring 120 1 Day 1 Day 10h P + G SHA-1 160 1 0/1 0/2

FSN9 0 Spring 220 1 Day 2h 6h P + G SHA-256 256 1 0/1 0/2

FSN10 0 Spring 120 1 Day 1h 10min 6h P + G sym. Encryption 0/0 0/0

FSN11 0 Spring 220 9h 20min 2h P bcrypt 184 210 SR 0/1 0/6

FSN12 0 Spring 220 1 Day 3 Days 9h P bcrypt 184 210 SR 0/1 0/6

FSP1 1 Spring 220 29 Days 72h bcrypt 184 210 SR 1 6

FSP2 1 Spring 120 4 Days 20h G SHA-256 256 1 1 2

FSP3 1 Spring 120 4h 30min 2h bcrypt 184 210 SR 1 6

FSP4 1 Spring 120 5 Days 10h G MD5 128 1 000 SR 1 4

FSP5 1 Spring 220 2 Days 16h bcrypt 184 210 SR 1 6

FSP6 1 Spring 120 1 Day 12h G Base64 0 0

FSP7 1 Spring 220 7 Days 20h bcrypt 184 210 SR 1 6

FSP9 1 Spring 220 1 Day 11h bcrypt 184 210 SR 1 6

FSP10 1 Spring 220 2 Days 1 Day 35h P bcrypt 184 210 SR 0/1 0/6

FSP12 1 Spring 220 2 Days 7h bcrypt 184 210 SR 1 6

FSP13 1 Spring 220 1 Day 8h bcrypt 184 210 SR 1 6

Table 3: Evaluation of participants’ initial and SecRequest-P submissions
Bold: Participants who at first delivered a plain text solution and thus, received the first security request (SecRequest-P). Working Time participants took to submit their initial

solution. Include SecRequest-P: Time participants needed to add security after SecRequest-P (1 Day = 24 hours). Active Working: Self-reported active working time reported by

participants for their final submissions. Salt: SR = SecureRandom, St = Static, pgC = pgCrypto, MR = Math.Random. Copied: Security code was most likely copied and pasted

from the Internet.

6.3 Java and Password Storage Experience

(H-G1, H-G2)

Similar to the previous freelancer study, we did not find any

effect of Java experience on the security score of the sub-

missions (Kruskal-Wallis: χ
2(12) = 8.46, p = 0.75, cor− p

= 0.75). Further, we only examined submissions which did

include some security, but did not find any effect of Java

experience on the security score either (group: secure = 1;

Kruskal-Wallis: χ
2(7) = 3.83 p = 0.80).

In addition to that, we asked our participants whether they

had stored user passwords in a database before. Only 3 of

43 participants said that they had never stored passwords

before. As in the previous studies [28, 30], we did not find

any significant effect on their decision to store the passwords

securely in our study (FET: p = 0.59, cor− p = 0.59, OR =

0.42, CI = [0.01, 8.63]).

6.4 Framework (H-F1)

Similar to the previous student study [30], we did not find

that the framework had a significant effect on the security

score when participants stored the passwords securely (group:

secure = 1; Wilcoxon Rank sum: W = 32.5, p = 0.16, family

= 2, cor − p = 0.32). The mean score for the JSF group

was 4.18 (group: secure = 1; min: 1, max: 6 , median: 5,

SD: 2.23). The Spring group received a higher mean of 5.33

(group: secure = 1, min: 2, max: 6, median: 6, SD: 1.41). In

both studies the spring group achieved slightly higher scores,

but since neither effects were statistically significant, future

studies will have to decide whether the small improvement

the spring framework might bring is worth conducting a study

with more power.

Further, we investigated the reported usability of both APIs.

We calculated the API usability scores suggested by Acar et

al. [2] for the Spring group (min: 62.5, max: 92.5, mean:

74.17, median: 72.5, SD: 9.36) and the JSF group (min:

50, max: 100, mean: 68.75, median: 70, SD: 13.11). The

172    Sixteenth Symposium on Usable Privacy and Security USENIX Association



Non−Prompting Prompting

In
it
ia

l 
S

o
lu

ti
o

n

S
e

c
R

e
q

u
e

s
t−

P

S
e

c
R

e
q

u
e

s
t−

G

In
it
ia

l 
S

o
lu

ti
o

n

S
e

c
R

e
q

u
e

s
t−

P

S
e

c
R

e
q

u
e

s
t−

G

0
1

2
3

4
5

6
7

Figure 1: Distribution of scores before and after the security

requests for the prompted and non-prompted group.
Each point stands for one participant.

score could range from 0-100 with 100 being the highest

usability score that can be achieved. Thus, the Spring group

achieved higher usability scores, however the difference was

not statistically significant. (Wilcoxon Rank Sum: W = 160,

p = 0.08).

Moreover, we tested for a correlation between API usability

and the achieved security scores but did not find any signifi-

cant correlation (Pearson: r = 0.08, p = 0.57).

In this study, we asked participants to evaluate the API

usability after possible security requests, so we can be certain

that all the participants used security mechanisms within the

frameworks before giving us their assessment. In the student

study [30] however, there were no follow up security requests

and thus thus, there were participants who did not use any se-

curity mechanisms. Since their experience with a framework

was reported based on functionality aspects only, we do not

draw a direct comparison to our study.

6.5 Security Guidelines (NIST and OWASP)

Figure 1 shows the distribution of scores for the prompted

and non-prompted groups for initial submissions and after par-

ticipants received SecRequest-P and/or SecRequest-G. The

figure visualizes how the distribution evolved after each re-

quest. The achieved scores rose after each request. Out of

all 43 participants, 25 received SecRequest-G with web links

to NIST and OWASP. The evaluation of these submissions

is available in the Appendix (Table 6). The mean security

score achieved was 5.86 (min: 2, max: 7, median: 6). Ten of

the 25 participants used Argon2 to store the passwords and

thus, achieved 7 points on the security score. Five of the 25

participants used bcrypt and achieved 6 points. The remaining

10 of 25 participants submitted solutions below 6 points, like

PBKDF2 with insufficient parameters, SHA-1, or MD5.

In the follow-up survey—independently whether partici-

pants received SecRequest-G—we asked participants whether

they know about and have experience with NIST or OWASP

sources for user password storage. 58% (25 of 43) of all

participants reported that they had heard of NIST or OWASP

before. 47% (20 of 43) participants stated to have followed

one (or both) of the guidelines in their submissions (including

participants without SecRequest-G). Of the 25 participants

who received SecRequest-G, 15 reported to have heard of

NIST or OWASP. Consequently, 10 participants received

instructions from us with NIST and OWASP sources, but

indicated to not know the sources.

When comparing both guidelines, NIST offers a more the-

oretical and complex recommendation, while OWASP of-

fers Argon2 example code in Java with clearer recommenda-

tions. We investigated whether our participants had copied

and pasted code from the OWASP guideline and found that

out of 10 participants who implemented Argon2 after our

second security request, 8 copied and pasted the code from

the OWASP guideline. We found the same comments in the

programming code as on the website.

In the following we present an analysis of participants’

experience with the guidelines based on their open-question

answers in the survey and the chat communication.

Guideline Experience with SecRequest-G. Our partici-

pants mentioned that reading the guidelines has helped them

to increase their knowledge. Participants found the guide-

lines useful, as they provided them with details, they were not

aware of:

“I was unaware of Argon2 and the weakness in

PBKDF2-with-HMAC and hadn’t thought of a few

things that were mentioned in the guidelines (max

password length for DoS protection, Unicode nor-

malization)” (FJP3).

FSN5 reported to like OWASP because it instructed him to

use existing hashing and salting algorithms instead of imple-

menting them himself:

“One of the OSWAP design principles is to keep se-

curity simple. In the registration process I avoided

implementing own salt and hashing algorithms [...].

This reduces chances of making security mistakes.”

Guideline Experience without SecRequest-G. Ten of 43

participants (21%), who did not receive SecRequest-G, re-

ported to have heard of NIST or OWASP before. Five of them

(FJN4, FJP4, FSN2, FSN12, FSP5) stated that they did not

follow the guidelines of the organizations in our task. As

reasons FJP4 noted that he heard of the organizations, but

never implemented their guidelines before and FSP5 stated:

USENIX Association Sixteenth Symposium on Usable Privacy and Security    173



Company Freelancer [28] Study Freelancer (only JSF) Study Freelancer (JSF and Spring)

Non-secure Secure Score Total Non-secure Secure Score Total Non-secure Secure Score Total

In
it

ia
l

su
b
m

is
si

o
n

Prompting 8 13 µ = 2.19 (σ = 2.52) 21 5 6 µ = 2.27 (σ = 2.8) 11 7 15 µ = 3.32 (σ = 2.8) 22

min = 0, max = 6 min = 0, max = 6 min = 0, max = 6

Non-Prompting 17 4 µ = 0.86 (σ = 1.96) 21 6 5 µ = 1.91 (σ = 2.59) 11 16 5 µ = 1 (σ = 2.07) 21

min = 0, max = 6 min = 0, max = 6 min = 0, max = 6

Total 25 17 µ = 1.52 (σ = 2.33) 42 11 11 µ = 2.09 (σ = 2.64) 22 23 20 µ = 2.19 (σ = 2.68) 43

A
ft

er
S

ec
R

eq
u
es

t-
P

Prompting 2 1 µ = 2 (σ = 3.46) 3 0 1 µ = 1 (σ = 0) 1 0 2 µ = 3.5 (σ = 3.54) 2

min = 0, max = 6 min = 1, max = 1 min = 1, max = 6

Non-Prompting 4 10 µ = 2 (σ = 2.29) 14 0 6 µ = 2.17 (σ = 1.94) 6 1 14 µ = 3.13 (σ = 2.36) 15

min = 0, max = 6 min = 1, max = 6 min = 0, max = 6

Total 6 11 µ = 2 (σ = 2.33) 17 0 7 µ = 2 (σ = 1.83) 7 1 16 µ = 3.18 (σ = 2.31) 17

Table 4: Comparison of (non-)secure solutions and the security score

“I could develop it without these practices.” Both used bcrypt

in their initial solution and received 6 points in the security

score. FSN11, FSP1, FSP3, FSP10, and FSP13 reported to

have followed one of the guidelines. Four of them used bcrypt

in their first submission and FSP10 used bcrypt in his second

submission after SecRequest-P. FSP1 reported about NIST:

“NIST guidelines were easy to follow as they are in

line with security best practices.”

6.6 Sample Comparison

In this section we present a direct comparison between the

previous freelancer study [28] and our replication study. In

the following we denote this study as Study Freelancer and

the original study as Company Freelancer, since a company

deception was used as study design. Unlike in the Company

Freelancer study, where only JSF was used as framework,

this study also looked at Spring as a between groups condi-

tion. However, for the examination of the deception effect,

we restrict our comparison to the JSF participants of our

study, since only there a direct comparison can be made. Fig-

ure 2 displays a distribution of participants’ initial submission

security scores from the both studies Study Freelancer and

Company Freelancer. For our study, Spring and JSF results

are reported separately. Considering the prompted and non-

prompted groups, the distributions of the obtained scores are

fairly similar.

Table 4 summarizes participants’ initial and SecRequest-

P related security results of both the Study Freelancer and

Company Freelancer. Since in the original study SecRequest-

G was not introduced to participants, we do not consider it

for the comparison of the both studies. Table 4 shows the

count of participants from the two groups (prompted and non-

prompted) and how many of the solutions were secure or

non-secure. The proportions of participants in each group

in both freelancer samples appear to be similar. Further, the

mean score values from the company freelancers and study

freelancers (only the JSF group) are similar as well.

We did not find any significant difference between the JSF

security scores of the Study Scenario (µ = 2.09, σ = 2.64)

and Company Freelancer Scenario (µ = 1.52, σ = 2.33) in the

scores of the initial submissions (group: secure = 1 & group

= JSF; Wilcoxon Rank sum: W = 86, p = 0.73, r = 0.09).

However, a lack of a statistically significant finding does not

mean there is none. With a large enough sample even small

differences will result in a statistically significant finding.

Power analysis is necessary to avoid Type II static errors

(i.e., false negatives). In this study, power analysis would

have established whether the lack of a statistically significant

difference between the replicated and original results was

meaningful, or if it was just an artifact of too few participants.

Future studies will have to decide whether the differences

shown above are worth re-examining with a larger sample

size.

6.6.1 Implementation Time

We compared the implementation time to submit the initial

solution of our study with the prior freelancer study [28] (min:

1 day, max: 8 days, mean: 3 days, median: 3 days, SD:

1.88). We did not find any significant difference between the

implementation time of both JSF groups (Wilcoxon Rank

sum: W = 457, p = 0.83). Further, we compared the time

spent on the first security request. In [28], the participants

needed on average 6.4 hours (sd 7.3 h, median 3.17 h). We did

not find a significant effect in both freelancer studies either

(W = 74, p = 0.52). The same caveats about the lack of power

apply as above.

6.6.2 Study Announcement: Self-reflection

In the follow-up survey our participants were asked whether

they would have stored the password securely if it had not

been a study. Interestingly the answers split in half, 22 re-

ported to would have stored the passwords securely, and 21

reported that they did not think that they would have stored

them securely. Six of the 22 who reported that they would

have performed differently if it was not a study, stored the

174    Sixteenth Symposium on Usable Privacy and Security USENIX Association



Study Freelancer

JSF

Study Freelancer

Spring

Company Freelancer

JSF
N

o
n

−
P

ro
m

p
ti
n

g

P
ro

m
p

ti
n

g

N
o

n
−

P
ro

m
p

ti
n

g

P
ro

m
p

ti
n

g

N
o

n
−

P
ro

m
p

ti
n

g

P
ro

m
p

ti
n

g

0
1

2
3

4
5

6

Figure 2: Initial submission score comparison of the pre-

vious freelancer study [28] (Company Freelancer) and our

replication study (Study Freelancer).
Each point stands for one participant. In the Company Freelancer

JSF group, Naiakshina et al. had almost twice as much participants

as in the JSF group of this study, because we also investigated

Spring as another value for the framework variable.

passwords in a sufficient way in the initial submissions. The

results of the freelancer study of Naiakshina et al. [28] where

the participants were not aware that they were participating in

a study until they finished programming, shows that partici-

pants in developer studies can overestimate their own security

awareness. We found that the reported details do not always

fit the actual code submission.

7 Discussion

Methodological implications for developer studies: Our re-

sults suggest that freelancers are a useful sample for usable

security developer studies. Response rates are higher than on

GitHub. The studies can be conducted online and it is possi-

ble to reach developers from all over the world. Freelancers

could provide more experience with real world projects and a

wide range of age and experience. Since freelancers on the

platform most likely do not know each other, the probability

of participants communicating with each other about the study

task and solutions is lower than for example, in a CS student

sample. Additionally, freelancers are a convenient sample as

they are looking for jobs and work with their own devices.

In comparison to the field study of Naiakshina et al. [28],

where the study itself was concealed, our study was conducted

by openly communicating the study context to the freelancers.

Using the same sample size and same study protocol (minus

the study deception), we got similar results as Naiakshina et

al. We got similar effect sizes, directions, and statistically

significant results for the same tests as they did and did not get

any that they did not. In Table 5 a comparison of both studies

and tests can be found. In both studies prompting lead to

more security. The impact was significant in both samples, so

we observed the same treatment effect (Company Freelancer:

OR = 6.55 and Study Freelancer: OR = 6.51).

Neither study found a significant effect of previous pass-

word storage experience. However, in both cases only very

few participants reported to have no password storage experi-

ence at all (Company Freelancer: n = 2 and Study Freelancer:

n = 3). Therefore, the results should not be over-interpreted.

Furthermore, Naiakshina et al. [28] did not find an effect of

Java experience on security. In this study, we did not find

an effect either. However, the direction of the correlation is

the same in both studies. Future studies will have to decide

whether to examine this effect with larger sample sizes.

In contrast to the previous freelancer study, we also tested

the two frameworks Spring and JSF as done in the student

study [30]. In [30], Naiakshina et al. did not find any signif-

icant difference between Spring and JSF. We did not find a

significant difference between the two frameworks either. In

both studies the mean security score was higher for the Spring

framework but future studies with more participants would

be needed to examine this effect further.

We conclude that for this study the removal of the

deception element does not seem to have changed any

outcomes and all relevant results gained from the original

study with deception have also been gathered by this one

without. Since deception should only be used when necessary,

for this study we would not recommend to use it again in

this specific context. While these results certainly do not

generalize to all developer security studies, it is an important

first indication that freelance developers recruited as part of a

study behave similarly to when they are hired for a regular

job. Therefore, our findings also offer an early indication

that platforms such as Freelancer.com may be promising

platforms for developer recruitment to supplement other

channels such as CS students and GitHub developers.

Security guidelines: Acar et al. [3] showed in their pro-

gramming experiment that using standard documentation

without access to other sources such as the Internet lead to

more secure code. However, the set-up of the experiment was

rather artificial. In the real world developers use the Inter-

net to find solutions while programming [30]. The standards

are available but only a few developers use them or are even

aware of them.

We found that concrete security policies with web links to

the guidelines did increase the score of the password storage

code. Ten participants were able to achieve full 7 points

although no participants in the past studies and in the initial

submissions achieved such a level for security. Even though

some participants were able to use secure industry standards

USENIX Association Sixteenth Symposium on Usable Privacy and Security    175



IV DV Statistical Test Company Freelancer [28] Study Freelancer

Prompting Secure FET p = 0.01* p = 0.006*

OR = 6.55, CI = [1.44, 37.04] OR = 6.51, CI = [1.51, 33.18]

Java Experience Score Kruskal-Wallis p = 0.21, r = 0.12 p = 0.75, r = 0.04

Stored Passwords Before Secure FET p = 0.17 p = 0.59

OR = 0, CI = [0,3.87] OR = 0.41, CI = [0.04, 2.69]

Framework Score Wilcoxon Rank sum - p = 0.16

- group: secure = 1, r = 0.3

Table 5: Summary of all tests across the different samples
IV: Independent variable, DV: Dependent variable, Company Freelancer: Freelancers with study deception [28], Study Freelancer:

Freelancers without study deception, OR: Odds ratio, CI: Confidence interval. The IV framework was not examined for freelancers in [28].

Significant tests are marked with *.

without being requested with the specific policies, a number

of participants reported to know the guidelines. However,

these participants were only able to score at most 6 points.

This finding emphasizes the need for explicit encouragement

of using security policies. The more support the policies offer

the more secure the code can be.

Performance-based payment using milestones: Mile-

stone payment is the recommended payment method on Free-

lancer.com. We split the payment into three milestones and

chose the milestones for the initial submission and the (se-

curity) code review in a 1:1 ratio. It has to be investigated

whether different ratios might result in different security re-

sults. Different performance rewards could help to increase

security and the security awareness as well. We chose this

ratio as we did not know how many security requests a par-

ticipant would need as this depends on the password storage

security in the initial and follow-up submission. In this study

we chose the security to weight as much as the initial func-

tional solution. We note that rewarding security performance

as a study variable might lead to better initial solutions. In

future research, this has to be evaluated with other scenarios

and developer studies.

8 Conclusion

One major issue of usable security developer studies is their

ecological validity. In the password-storage study of Naiak-

shina et al. [29,30], CS students claimed that they would have

behaved differently if they would have worked for a company.

In a follow-up study, Naiakshina et al. [28] concealed the

study context and hired freelancers for the same project. This

form of deception requires additional study design work to

maintain the deception. Frequent use of deception can cause

problems as well. Both these issues make the use of deception

for this kind of developer study something one would want

to avoid if possible. Therefore, we replicated the deception

study of Naiakshina et al. [28] without deception and com-

pared the results. Overall the results were very similar leading

us to propose the following recommendations:

• When trying to get ecologically valid results for free-

lance developers, deception is not always necessary.

In our example running the study openly produced very

similar outcomes compared to hiring freelancers for

real. We got similar effect sizes and directions for the

same tests as Naiakshina et al. in [28]. However, our

study presents only one data point and further research is

needed on the use of deception in other studies covering

other security issues, tasks and scenarios, as well as with

other types of developers.

• Instruct developers to use security-guidelines. We

found that providing participants with specific guidelines

for password storage can increase the security of their

solutions drastically. Almost all our participants were

able to implement secure password storage after being

provided with specific security guidelines. If guidelines

offer code examples, they are more likely to be imple-

mented and included into the developers’ code. Thus,

we recommend designers of security guidelines to give

specific code examples of secure code. We further recom-

mend organizations to provide developers with specific

security guidelines to receive software with state-of-the-

art security standards. If guidelines might not be known

to the employer, we recommend to include at least secu-

rity prompting in the task to raise security awareness.

9 Acknowledgments

This work was partially funded by the ERC Grant 678341:

Frontiers of Usable Security.

176    Sixteenth Symposium on Usable Privacy and Security USENIX Association



References

[1] Open web application security project (owasp).

https://github.com/OWASP/CheatSheetSeries/

blob/master/cheatsheets/Password_Storage_

Cheat_Sheet.md. Last Accessed: November 14, 2019.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Simson

Garfinkel, Doowon Kim, Michelle L Mazurek, and

Christian Stransky. Comparing the usability of crypto-

graphic apis. In Security and Privacy (SP), 2017 IEEE

Symposium on, pages 154–171, San Jose, CA, USA,

2017. IEEE, IEEE.

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon

Kim, Michelle L Mazurek, and Christian Stransky. You

get where you’re looking for: The impact of information

sources on code security. In 2016 IEEE Symposium on

Security and Privacy (SP), pages 289–305, Piscataway,

NJ, USA, May 2016. IEEE Press.

[4] Yasemin Acar, Sascha Fahl, and Michelle L Mazurek.

You are not your developer, either: A research agenda

for usable security and privacy research beyond end

users. In Cybersecurity Development (SecDev), IEEE,

pages 3–8, Piscataway, NJ, USA, 2016. IEEE, IEEE

Press.

[5] Yasemin Acar, Christian Stransky, Dominik Wermke,

Michelle L. Mazurek, and Sascha Fahl. Security devel-

oper studies with github users: Exploring a convenience

sample. In Thirteenth Symposium on Usable Privacy

and Security (SOUPS 2017), pages 81–95, Santa Clara,

CA, 2017. USENIX Association.

[6] Malik Aleem Ahmed and Jeroen van den Hoven. Agents

of responsibility—freelance web developers in web ap-

plications development. Information Systems Frontiers,

12(4):415–424, Sep 2010.

[7] Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason I

Hong, and Lorrie Faith Cranor. The privacy and security

behaviors of smartphone app developers. 2014.

[8] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth

Holmes, Jing Feng, Emerson Murphy-Hill, and Chris

Parnin. Do developers read compiler error messages?

In Proceedings of the 39th International Conference

on Software Engineering, ICSE ’17, pages 575–585,

Piscataway, NJ, USA, 2017. IEEE Press.

[9] Jason Bau, Frank Wang, Elie Bursztein, Patrick Mutch-

ler, and John C Mitchell. Vulnerability factors in new

web applications: Audit tools, developer selection &

languages. Stanford, Tech. Rep, 2012.

[10] Douglas G Bonett. Replication-extension studies. Cur-

rent Directions in Psychological Science, 21(6):409–

412, 2012.

[11] J. Bonneau. The science of guessing: Analyzing an

anonymized corpus of 70 million passwords. In 2012

IEEE Symposium on Security and Privacy, pages 538–

552, San Francisco, CA, USA, May 2012. IEEE.

[12] Joseph Bonneau and Sören Preibusch. The password

thicket: Technical and market failures in human authen-

tication on the web. In WEIS, 2010.

[13] Deanna D Caputo, Shari Lawrence Pfleeger, M Angela

Sasse, Paul Ammann, Jeff Offutt, and Lin Deng. Barri-

ers to usable security? Three organizational case studies.

IEEE Security & Privacy, 14(5):22–32, 2016.

[14] Jacob Cohen. A coefficient of agreement for nominal

scales. Educational and psychological measurement,

20(1):37–46, 1960.

[15] Cleidson R. B. de Souza, David Redmiles, Li-Te Cheng,

David Millen, and John Patterson. Sometimes you

need to see through walls: A field study of application

programming interfaces. In Proceedings of the 2004

ACM Conference on Computer Supported Cooperative

Work, CSCW ’04, pages 63–71, New York, NY, USA,

2004. ACM.

[16] Serge Egelman, Andreas Sotirakopoulos, Ildar Mus-

lukhov, Konstantin Beznosov, and Cormac Herley. Does

my password go up to eleven?: The impact of password

meters on password selection. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems, pages 2379–2388, New York, NY, USA, 2013.

ACM, ACM.

[17] Sascha Fahl, Marian Harbach, Yasemin Acar, and

Matthew Smith. On the ecological validity of a pass-

word study. In Proceedings of the Ninth Symposium on

Usable Privacy and Security, page 13. ACM, 2013.

[18] Matthew Finifter and David Wagner. Exploring the rela-

tionship between web application development tools and

security. In Proceedings of the 2Nd USENIX Conference

on Web Application Development, WebApps’11, pages

9–9, Berkeley, CA, USA, 2011. USENIX Association.

[19] Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik.

Statistical methods for rates and proportions. John

Wiley & Sons, 2013.

[20] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,

Christian Stransky, Sebastian Möller, Yasemin Acar,

and Sascha Fahl. Developers deserve security warn-

ings, too: On the effect of integrated security advice on

cryptographic (api) misuse. In Fourteenth Symposium

USENIX Association Sixteenth Symposium on Usable Privacy and Security    177



on Usable Privacy and Security (SOUPS 2018), pages

265–281, Baltimore, MD, 2018. USENIX Association.

[21] Paul A Grassi, James L Fenton, EM Newton,

RA Perlner, AR Regenscheid, WE Burr, JP Richer,

NB Lefkovitz, JM Danker, Yee-Yin Choong, et al.

Nist special publication 800-63b: Digital iden-

tity guidelines. Enrollment and Identity Proof-

ing Requirements. https://pages.nist.gov/

800-63-3/sp800-63b.html, 2017.

[22] Ameya Hanamsagar, Simon S Woo, Chris Kanich, and

Jelena Mirkovic. Leveraging semantic transformation

to investigate password habits and their causes. In

Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems, page 570, New York,

NY, USA, 2018. ACM, ACM.

[23] Saranga Komanduri, Richard Shay, Patrick Gage Kelley,

Michelle L Mazurek, Lujo Bauer, Nicolas Christin, Lor-

rie Faith Cranor, and Serge Egelman. Of passwords and

people: Measuring the effect of password-composition

policies. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, pages 2595–

2604, New York, NY, USA, 2011. ACM, ACM.

[24] Katharina Krombholz, Wilfried Mayer, Martin

Schmiedecker, and Edgar Weippl. "i have no idea what

i’m doing" - on the usability of deploying HTTPS. In

26th USENIX Security Symposium (USENIX Security

17), pages 1339–1356, Vancouver, BC, 2017. USENIX

Association.

[25] Thomas D. LaToza, Gina Venolia, and Robert DeLine.

Maintaining mental models: A study of developer work

habits. In Proceedings of the 28th International Con-

ference on Software Engineering, ICSE ’06, pages 492–

501, New York, NY, USA, 2006. ACM.

[26] Peter Mayer, Jan Kirchner, and Melanie Volkamer. A

second look at password composition policies in the

wild: Comparing samples from 2010 and 2016. In

Thirteenth Symposium on Usable Privacy and Security

(SOUPS 2017), pages 13–28, Santa Clara, CA, 2017.

USENIX Association.

[27] Michelle L. Mazurek, Saranga Komanduri, Timothy Vi-

das, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor,

Patrick Gage Kelley, Richard Shay, and Blase Ur. Mea-

suring password guessability for an entire university. In

Proceedings of the 2013 ACM SIGSAC Conference on

Computer & Communications Security, CCS ’13, pages

173–186, New York, NY, USA, 2013. ACM.

[28] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,

Emanuel von Zezschwitz, and Matthew Smith. "if you

want, i can store the encrypted password": A password-

storage field study with freelance developers. In Pro-

ceedings of the 2019 CHI Conference on Human Factors

in Computing Systems, CHI ’19, pages 140:1–140:12,

New York, NY, USA, 2019. ACM.

[29] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-

nau, Marco Herzog, Sergej Dechand, and Matthew

Smith. Why do developers get password storage wrong?:

A qualitative usability study. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’17, pages 311–328, New York,

NY, USA, 2017. ACM.

[30] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-

nau, and Matthew Smith. Deception task design in

developer password studies: Exploring a student sample.

In Fourteenth Symposium on Usable Privacy and Se-

curity (SOUPS 2018), pages 297–313, Baltimore, MD,

USA, 2018. USENIX Association.

[31] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar,

Michael Backes, Charles Weir, and Sascha Fahl. A

stitch in time: Supporting android developers in writ-

ingsecure code. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications

Security, CCS ’17, pages 1065–1077, New York, NY,

USA, 2017. ACM.

[32] Lutz Prechelt. Plat_forms: A web development platform

comparison by an exploratory experiment searching for

emergent platform properties. IEEE Transactions on

Software Engineering, 37(1):95–108, Jan 2011.

[33] Elissa M Redmiles, Ziyun Zhu, Sean Kross, Dhruv

Kuchhal, Tudor Dumitras, and Michelle L Mazurek.

Asking for a friend: Evaluating response biases in se-

curity user studies. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications

Security, pages 1238–1255. ACM, 2018.

[34] Sean M Segreti, William Melicher, Saranga Komanduri,

Darya Melicher, Richard Shay, Blase Ur, Lujo Bauer,

Nicolas Christin, Lorrie Faith Cranor, and Michelle L

Mazurek. Diversify to survive: Making passwords

stronger with adaptive policies. In Thirteenth Sympo-

sium on Usable Privacy and Security (SOUPS), pages

1–12, Santa Clara, CA, USA, 2017. USENIX Associa-

tion.

[35] Awanthika Senarath and Nalin Asanka Gamagedara

Arachchilage. Understanding software developers’ ap-

proach towards implementing data minimization. arXiv

preprint arXiv:1808.01479, 2018.

[36] Richard Shay, Saranga Komanduri, Adam L. Durity,

Phillip (Seyoung) Huh, Michelle L. Mazurek, Sean M.

178    Sixteenth Symposium on Usable Privacy and Security USENIX Association



Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and

Lorrie Faith Cranor. Can long passwords be secure

and usable? In Proceedings of the 32Nd Annual ACM

Conference on Human Factors in Computing Systems,

CHI ’14, pages 2927–2936, New York, NY, USA, 2014.

ACM.

[37] Richard Shay, Saranga Komanduri, Adam L. Durity,

Phillip (Seyoung) Huh, Michelle L. Mazurek, Sean M.

Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and

Lorrie Faith Cranor. Designing password policies for

strength and usability. ACM Transactions on Informa-

tion and System Security (TISSEC), 18(4):13:1–13:34,

May 2016.

[38] Dag IK Sjoberg, Bente Anda, Erik Arisholm, Tore

Dyba, Magne Jorgensen, Amela Karahasanovic, Es-

pen Frimann Koren, and Marek Vokác. Conducting

realistic experiments in software engineering. In Pro-

ceedings international symposium on empirical software

engineering, pages 17–26, Piscataway, NJ, USA, 2002.

IEEE, IEEE Press.

[39] Elizabeth Stobert and Robert Biddle. The password life

cycle: User behaviour in managing passwords. In 10th

Symposium On Usable Privacy and Security (SOUPS

2014), pages 243–255, Menlo Park, CA, USA, 2014.

USENIX Association.

[40] Christian Stransky, Yasemin Acar, Duc Cuong Nguyen,

Dominik Wermke, Doowon Kim, Elissa M Red-

miles, Michael Backes, Simson Garfinkel, Michelle L

Mazurek, and Sascha Fahl. Lessons learned from using

an online platform to conduct large-scale, online con-

trolled security experiments with software developers.

In 10th USENIX Workshop on Cyber Security Experi-

mentation and Test (CSET’17), 2017.

[41] David R Thomas. A general inductive approach for

analyzing qualitative evaluation data. American journal

of evaluation, 27(2):237–246, 2006.

[42] Blase Ur, Jonathan Bees, Sean M. Segreti, Lujo Bauer,

Nicolas Christin, and Lorrie Faith Cranor. Do users’

perceptions of password security match reality? In

Proceedings of the 2016 CHI Conference on Human

Factors in Computing Systems, CHI ’16, pages 3748–

3760, New York, NY, USA, 2016. ACM.

[43] Blase Ur, Patrick Gage Kelley, Saranga Komanduri,

Joel Lee, Michael Maass, Michelle L. Mazurek, Timo-

thy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer,

Nicolas Christin, Lorrie Faith Cranor, Serge Egelman,

and Julio López. Helping users create better passwords.

USENIX, 37(6):51–57, 2012.

[44] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Seg-

reti, Richard Shay, Lujo Bauer, Nicolas Christin, and

Lorrie Faith Cranor. I added ’!’ at the end to make

it secure: Observing password creation in the lab. In

Eleventh Symposium On Usable Privacy and Security

(SOUPS 2015), pages 123–140, Ottawa, 2015. USENIX

Association.

[45] Rick Wash, Emilee Rader, Ruthie Berman, and Zac

Wellmer. Understanding password choices: How fre-

quently entered passwords are re-used across websites.

In Twelfth Symposium on Usable Privacy and Security

(SOUPS), pages 175–188, Denver, CO, 2016. USENIX

Association.

[46] Rick Wash, Emilee Rader, and Chris Fennell. Can peo-

ple self-report security accurately?: Agreement between

self-report and behavioral measures. In Proceedings of

the 2017 CHI Conference on Human Factors in Com-

puting Systems, CHI ’17, pages 2228–2232, New York,

NY, USA, 2017. ACM.

[47] Chamila Wijayarathna and Nalin A. G. Arachchilage.

Why johnny can’t store passwords securely?: A usabil-

ity evaluation of bouncycastle password hashing. In

Proceedings of the 22Nd International Conference on

Evaluation and Assessment in Software Engineering

2018, EASE’18, pages 205–210, New York, NY, USA,

2018. ACM.

[48] Chamila Wijayarathna and Nalin AG Arachchilage. Am

i responsible for end-user’s security? Baltimore, MD.

USENIX Association.

[49] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-

Padilla, and Matthew Smith. Helping johnny to analyze

malware: A usability-optimized decompiler and mal-

ware analysis user study. In Security and Privacy (SP),

2016 IEEE Symposium on, pages 158–177, San Jose,

CA, USA, 2016. IEEE, IEEE.

[50] Aiko Yamashita and Leon Moonen. Do developers care

about code smells? an exploratory survey. In Reverse

Engineering (WCRE), 2013 20th Working Conference

on, pages 242–251. IEEE, IEEE, 2013.

[51] Aiko Yamashita and Leon Moonen. Surveying de-

veloper knowledge and interest in code smells through

online freelance marketplaces. In User Evaluations for

Software Engineering Researchers (USER), 2013 2nd

International Workshop on, pages 5–8, San Francisco,

CA, USA, 2013. IEEE, IEEE.

USENIX Association Sixteenth Symposium on Usable Privacy and Security    179



APPENDIX

A Security Requests

Figure 3 visualizes the security request procedure. When we

were sent a solution where the password was stored in plain

text or where the participant received less than 6 points in the

security score, we sent the following messages:

• SecRequest-P: Participant handed in plain text code:

R: I saw that the password is stored in clear text. Could

you also store it securely?

• SecRequest-G: Security score < 6:

R: Thank you for submitting your solution. Now

I have one further request. I noticed, that you did

not follow industry best practices, e.g., NIST (Na-

tional Institute of Standards and Technology) or

OWASP (Open Web Application Security Project),

to securely store the end-user password. Could you

please revise your submission and ensure that you

follow industry best practices? You can find some

information on OWASP on this website: https:

//github.com/OWASP/CheatSheetSeries/

blob/master/cheatsheets/Password_

Storage_Cheat_Sheet.md and information on

NIST on this website: https://pages.nist.

gov/800-63-3/sp800-63b.html in section

5.1.1.2.

B Security Scale

We based the evaluation of participants’ submissions on the

security score of Naiakshina et al. [29]:

1. The end-user password is salted (+1) and hashed (+1).

2. The derived length of the hash is at least 160 bits long

(+1).

3. The iteration count for key stretching is at least 1000

(+0.5) or 10000 (+1) for PBKDF2 and at least 210
= 1024

for bcrypt (+1).

4. A memory-hard hashing function is used (+1).

5. The salt value is generated randomly (+1).

6. The salt is at least 32 bits in length (+1).

C Hypotheses

Due to the adjusted study design, we were able to test only

four of the seven main hypotheses from [30]. While it was

possible to track security attempts in a lab setting, in an online

Submission

Security

Score

SecRequest-

P

Security

Score

SecRequest-

G

Survey

Plain text

<6 >=6

<6

>=6

Figure 3: Security request procedure
Participants received SecRequest-P, if they submitted a plain text

solution and SecRequest-G if the solution scored less than 6 points.

Participants with plain text solutions thus, could receive both

requests.

study this information was not accessible. We did, though,

consider the subset secure = 1 (achieving security) for our

analysis. Hypotheses from [30]:

• H-P1 - Priming has an effect on the likelihood of partici-

pants attempting security.

• H-F1 - Framework has an effect on the security score of

participants attempting security.

• H-G1 - Years of Java experience have an effect on the

security scores.

• H-G2 - If participants state that they have previously

stored passwords, it affects the likelihood that they store

them securely.

D Summary of Statistical Analysis

Table 7 summarizes all hypotheses from our analysis of the

study.

E Playbook

We used the same playbook Naiakshina et al. used in [28].

We extended and adapted it by several relevant aspects. P indi-

cates the participant and R indicates the researcher. Because

of space limitation, we mention only playbook extensions

here.

180    Sixteenth Symposium on Usable Privacy and Security USENIX Association



Participant Prompting Framework Payment Include

SecRequest-G

Function Length

in bits

Iteration Salt Secure Score Copied NIST OWASP

FJN1 0 JSF 120 1 Day SHA-1 160 1 1 2 X

FJN3 0 JSF 120 1 Day bcrypt 184 210 SR 1 6

FJN5 0 JSF 220 50 min PBKDF2 (SHA-1) 256 10 000 St 1 5 X X

FJN7 0 JSF 120 1 Day MD5 128 1 SR 1 4

FJN8 0 JSF 120 2 Days PBKDF2 (SHA-512) 512 65 536 St 1 5 X

FJN9 0 JSF 220 19 Days Argon2i 256 2 SR 1 7 X X

FJN10 0 JSF 220 1h 30min PBKDF2 (SHA-1) 128 65 536 SR 1 5 X

FJN12 0 JSF 220 15min Argon2i 256 10 SR 1 7 X

FJP2 1 JSF 120 2 Days PBKDF2 (SHA-1) 512 1 000 SR 1 5.5

FJP3 1 JSF 120 5h 30min Argon2i 256 20 SR 1 7 X

FJP6 1 JSF 120 2 Days Argon2i 256 40 SR 1 7 X

FJP7 1 JSF 120 35min PBKDF2 (SHA-1) 128 4 SR 1 4 X X X

FJP8 1 JSF 120 3h 30min PBKDF2 (SHA-1) 512 1 000 SR 1 5.5 X X

FJP9 1 JSF 120 2 Days PBKDF2 (SHA-1) 512 1 000 SR 1 5.5 X X

FJP10 1 JSF 120 1 Day Argon2i 256 40 SR 1 7 X

FJP11 1 JSF 220 1 Day bcrypt 184 212 SR 1 6

FSN1 0 Spring 120 2 Days Argon2i 256 20 SR 1 7 X X X

FSN3 0 Spring 120 6 Days Argon2i 256 4 SR 1 7 X X

FSN5 0 Spring 120 4 Days bcrypt 184 210 SR 1 6 X

FSN7 0 Spring 120 1 Day Argon2i 256 40 SR 1 7 X

FSN9 0 Spring 220 1 Day bcrypt 184 210 SR 1 6 X X

FSN10 0 Spring 120 1h Argon2i 256 40 SR 1 7 X X

FSP2 1 Spring 120 10h PBKDF2 (SHA-1) 128 65 536 SR 1 5

FSP4 1 Spring 120 3 Days bcrypt 184 210 SR 1 6

FSP6 1 Spring 120 14h Argon2d 128 3 SR 1 7 X

Table 6: Evaluation of participants’ submissions after SecRequest-G
Include SecRequest-G: Time participants needed to add security after SecRequest-G. Salt: SR = SecureRandom, R = Random, St = Static. Copied: Security code was probably

copied and pasted from the Internet. NIST/OWASP: Participant stated that he/she followed the security guidelines of NIST/OWASP programming the task.

H Sub-sample IV DV Test O.R. CI p-value cor− p-value

H-P1# - Prompting Secure FET 6.51 [1.51, 33.18] 0.006* 0.01*

H-G1# - Java experience Score Kruskal-Wallis - - 0.75 0.75

H-G2# - Stored passwords before Secure FET 0.42 [0.01, 8.63] 0.59 0.59

H-F1# secure = 1 Framework Score Wilcoxon rank sum - - 0.16 0.32

E-A1 secure = 1 Java experience Score Kruskal-Wallis - - 0.80 -

E-A2 - Framework API usability Wilcoxon rank sum - - 0.08 -

E-A3 - Score API usability Pearson Cor. - [-0.21, 0.38] 0.57 -

S-C1 secure = 1& group = JSF Study sample Score Wilcoxon rank sum - - 0.73 -

S-C2 group = JSF Study sample Implementation time initial submission Wilcoxon rank sum - - 0.83 -

S-C3 group = JSF Study sample Implementation time time for SecRequest-P Wilcoxon rank sum - - 0.52 -

Table 7: Summary of statistical analysis
IV: Independent variable, DV: Dependent variable, O.R..: Odds ratio, CI: Confidence interval, E-A: Exploratory analysis, S-C: Sample Comparison. All tests

were conducted on security values of the initial solutions before participants received any security requests. H-P1 and H-G2 as well as H-G1 and H-F1 are

corrected with Bonferroni-Holm correction (cor-p value). # = Hypothesis of Naiakshina et al. [28, 30], * = Significant Tests.

E.1 Study Announcement and Study Offer

We are researchers from the University of Bonn working in

the field of software usability. We are always looking for

software developers and system administrators who are in-

terested in taking part in one of our studies (programming

and surveys). All data will be processed pseudonymously and

stored anonymized after the study; there will be no identifying

information published in any form. If you are interested in

participating in studies - Please contact us!

After the participants placed a bid on the project, we contacted

them via the private chat at Freelancer.com with the following

message:

R: Hello XYZ, we are happy that you want to take part in

our study. The payment will be divided into 3 milestones: 50

euros (100 euros) for your initial code release, additional 50

euros (100 euros) for the final code release after our review

and further additional 20 euros for completing our survey

about your programming experience and your experiences

with this task. If this is fine for you and you want to take part

in the study, we need you to sign a consent form. Please go to

the following website to do so: LINK Your study-ID is: XXX

Thanks in advance. Kind regards, . . .

When the freelancer signed the consent form, we sent the

second message and a ZIP file with task and code:

R: Hello XYZ, you agreed to take part in our study. Thank

you for signing the consent form! Now I will send you the

code as a ZIP file. You will find the task in there too. Please

have a look at it and tell me if you want to do it. Then I will

award you with the project and create the milestones. Kind

regards, . . .

After that message, we got mostly three kinds of reactions:

• The freelancer agreed to take part, we awarded him/her

USENIX Association Sixteenth Symposium on Usable Privacy and Security    181



and wished him/her Happy coding!

• The freelancer did not react anymore:

Hello XYZ, what do you think? Are you still interested

to take part in the study?

• P: May I check the code and get back to you tomor-

row/later/. . . ?

R: Yes, sure! Take your time.

E.2 Deadline

Some of the participants asked us for a final deadline. Since

we did not want to rush them, we did not set one, but asked

them to tell us how much time they needed to finish it. When

a freelancer did not ask for a deadline, we decided to contact

him/her after 10 days to ask for an update.

We had two cases where the freelancers did not answer several

questions for updates. In that case we set a deadline and ended

the study, when they exceeded it.

• P: What is the final delivery?

R: What do you think how much time you need to solve

the task?

P: DATE

R: Ok, that’s fine. Thank you.

• Deadline exceeded:

R: Hey XYZ, could you give us a status update? Kind

regards, . . .

• 10 days after task was sent and in case no deadline was

set:

R: Hey XYZ, could you give us a status update? What

do you think how much time you need to solve the task?

• If no reaction after 3 weeks:

R: Hello, please send your solution till date in one week.

If you decided to no longer participate in the study, I

would be very glad if you could let me know. Thank you

and kind regards, . . .

E.3 Password-related Questions

The following questions concerned password storage:

• Before submitting initial solution:

P: Should I implement security/secure password stor-

age?

R: Whatever you would recommend!

• P: Is *** fine?

R: Whatever you would recommend/use!

• P: I cannot find password encryption in the requirements,

can you tell me where it is written? I might have missed

it.

R: It is not in there, that is true. But could you add it?

• After SecRequest-G:

P: Should I implement all the rules mentioned in NIST

document? There are so many rules in NIST.

R: You don’t have to implement all rules, but please

concentrate on secure password storage in a database

on the back-end site. For us it’s most important that the

password is saved securely.

E.4 General Questions

Also in the general communication we often received similar

questions.

• P: Can I build it from scratch?

R: You can solve the task as you prefer.

• P: If I have some questions for your project, can I ask

you?

R: Sure!

• P: Do you have a server where we can upload this code

for you to test?

R: None that I have access to. Would it be possible for

you to send me a video or screenshots so I can see that

it is working on your computer?

• Participant did not work on our database:

R: Could you also make it work on our database?

• P: Once the user registers, do we need to send verifica-

tion email also and once he clicks on that, we will make

user status as active?

R: No, we only need the data to be stored in our data

base for now!

• P: I need to see the ER diagram.

R: We do not have that yet. Is it necessary?

P: . . .

R: Could you please create a single table for now and I

will talk to my mentor about the rest?

• P: Do you require the login functionality as well? Should

I implement is as a further task? What else except regis-

tration will be needed?

R: No, thank you. Please only program the registration

functionalities.

• P: The password is in the database, so users won’t be

able to access it.

R: And what if someone gets access to the database?

• P: Could you tell me what (. . . ) is for? / Could you help

me with (. . . )?

R: Since we are conducting a study and all participants

should have the same requirements, I cannot help you

with specific questions about the code. I’m sorry!

182    Sixteenth Symposium on Usable Privacy and Security USENIX Association



• Participant is confused (after SecRequest-G):

R: You will not receive any further request. You can

choose, which industry standard you would like to fol-

low; OWASP or NIST. So that you do not have to read

the whole NIST guideline, you can read all necessary in-

formation in section 5.1.1.2. This section approximately

complies with the length of the provided OWASP source.

It is up to you to choose one standard. Afterwards you

only have to fill out a subsequent survey, which concludes

the study.

E.5 Receiving the Solution and Survey Re-

quest

After receiving the final solution, we wrote:

Thank you, for sending your result! I will look into it.

We checked the remote database for code examples. If the

freelancer had not worked on it, we wrote: Could you also

make it work on our database?

If the freelancer could not make it work on our database,

we asked for pictures and a video that showed that the code

was working. We also checked it for functionality and if

everything worked, we asked the freelancers to take part in

our survey.

Message: Hello XYZ, thank you for sending us your results.

Like announced in the study description we would like to

invite you to a concluding survey. You can find it here: LINK

Kind regards, . . .

E.6 Exit Communication

After the freelancers finished the survey, we released the last

milestone and sent them the following message: Thank you

for your participation! We are happy about your feedback,

but we would like to kindly ask you to not mention our study

content in order to ensure the validity of our study. Thank you

again! And they all replied that they would not mention it.

Many of the freelancers asked for a good or a five-star review,

which we gave them: Yes, we did. It was nice working with

you.

Also many of them asked, if we had further projects in which

they could take part.

R: At the moment we unfortunately have only one project.

E.7 Review

We gave all participants the same review:

Very good communication, delivered on time. It was nice

working with him/her!

USENIX Association Sixteenth Symposium on Usable Privacy and Security    183


	Introduction
	Related Work
	Ecological Validity
	Security Developer and Password Studies
	Developer Studies with Freelancers

	Methodology
	Study Design Changes
	Pilot Study
	Participants
	Evaluation

	Limitations
	Ethics
	Results
	Security
	Prompting effect (H-P1)
	Java and Password Storage Experience (H-G1, H-G2)
	Framework (H-F1)
	Security Guidelines (NIST and OWASP)
	Sample Comparison
	Implementation Time
	Study Announcement: Self-reflection


	Discussion
	Conclusion
	Acknowledgments
	Security Requests
	Security Scale
	Hypotheses
	Summary of Statistical Analysis
	Playbook
	Study Announcement and Study Offer
	Deadline
	Password-related Questions
	General Questions
	Receiving the Solution and Survey Request
	Exit Communication
	Review




