
Do you really code? Designing and Evaluating
Screening Questions for

Online Surveys with Programmers
Anastasia Danilova
University of Bonn
Bonn, Germany

danilova@cs.uni-bonn.de

Alena Naiakshina
University of Bonn
Bonn, Germany

naiakshi@cs.uni-bonn.de

Stefan Horstmann
University of Bonn
Bonn, Germany

Stefan.Horstmann@gmx.net

Matthew Smith
University of Bonn, Fraunhofer FKIE

Bonn, Germany
smith@cs.uni-bonn.de

Abstract—Recruiting professional programmers in sufficient
numbers for research studies can be challenging because they
often cannot spare the time, or due to their geographical
distribution and potentially the cost involved. Online platforms
such as Clickworker or Qualtrics do provide options to recruit
participants with programming skill; however, misunderstand-
ings and fraud can be an issue. This can result in participants
without programming skill taking part in studies and surveys. If
these participants are not detected, they can cause detrimental
noise in the survey data. In this paper, we develop screener
questions that are easy and quick to answer for people with
programming skill but difficult to answer correctly for those
without. In order to evaluate our questionnaire for efficacy and
efficiency, we recruited several batches of participants with and
without programming skill and tested the questions. In our batch
42% of Clickworkers stating that they have programming skill
did not meet our criteria and we would recommend filtering these
from studies. We also evaluated the questions in an adversarial
setting. We conclude with a set of recommended questions which
researchers can use to recruit participants with programming
skill from online platforms.

I. INTRODUCTION

Conducting user studies is an essential part of empirical
software engineering; however, recruiting enough participants
with programming skill can be challenging. Researchers use
different methods to recruit programmers for studies related
to software engineering. One common method is to recruit
computer science (CS) students or developers from local
companies for a local and in-person study. On the other end
of the spectrum, researchers also commonly recruit developers
on an international level for remote studies, using a variety
of platforms. One advantage of recruiting locally is that
researchers can be fairly certain that most of their sample
actually has a computer science/programming background
(e.g., [1], [2], [3], [4], [5], [6]). Unfortunately, finding enough
willing participants locally can be difficult; Naiakshina et
al. [2] reported that they could only get 40 out of 1600 CS
students to take part in a study where the compensation was
100 euros. To widen the recruitment pool and include non-
student participants, it is common for researchers to resort to
online studies and recruit participants online (e.g., [7], [8],
[9], [10], [11], [12], [13], [14], [15]). Diverse recruitment

strategies have been used, such as cold-calling programmers
on platforms such as Stack Overflow, GitHub, Meet-up groups,
etc. or posting open invitations on social media, in forums,
newsletters and events, with the expectation being that partici-
pants without programming knowledge will not sign up for the
studies [13], [16], [17]. However, since researchers often offer
significantly higher compensation than for end-user studies [1],
[2], [11], there can be an incentive for participants to take part
in a study despite having no programming skill.

The acquisition of skill is divided in three overlapping
phases: (1) knowledge acquisition, (2) knowledge associa-
tion, and (3) autonomous task performance [18], [19]. For
programming skill, we use the definition of Bergersen et
al. [19], which is in accordance to the definition used in
psychology [18], [20], [21], [22], [23]: “the ability to use one’s
knowledge effectively and readily in execution or performance
of programming tasks.” In previous work with programmers,
participants were often expected to have programming skill
in various programming languages such as Python, Java,
C, Perl, Haskell, JavaScript, PHP, etc. (e.g., [3], [7], [9],
[10], [15], [19], [24], [25], [26], [27]). However, people who
use programs such as Excel, manage a content management
system (CMS) or write HTML might consider themselves as
having programming skill. While this does not match our
understanding and the requirements of previous research with
programmers, we want to make it clear that participants stating
that they have programming skill might be an honest misunder-
standing from our perspective and not necessarily malicious
intent. None the less, having these kinds of participants in
programming related studies and surveys is detrimental.

In studies which contain actual programming tasks, these
participants can be detected fairly easily. However, since it is
common practice to pay participants independently of how
well they perform, they still cost time and cause financial
damage to the researchers. More critically, studies which
aim to examine attitudes towards software engineering related
topics, such as new features of programming languages, API
design, error handling, or security and privacy, might corrupt
their data by including answers from participants who do not
understand the subject matter because they do not have any

ar
X

iv
:2

10
3.

04
42

9v
1 

 [
cs

.H
C

] 
 7

 M
ar

 2
02

1



programming skill. Examples for such studies are [13], [14],
[16], [17], [28], [29], [30], [31], [27], [32], [33], [34], [25].

Researchers can also use online recruitment platforms such
as Clickworker [35] or Qualtrics [36] for developer studies
(e.g., [13], [29]). These platforms provide panels to recruit
participants with specific skills, such as programming. How-
ever, as mentioned above, there might be misunderstandings
concerning the term and the compensation for participants with
(self-stated) programming skills is higher than for other types
of study participants, and consequently there is the risk of
participants falsely stating that they have these skills. Danilova
et al. [29] came across such a case. They ran a survey to study
developers’ attitudes to security warning design, for which
they used Qualtrics to recruit participants with programming
skill. To test the participants’ basic developer knowledge,
the authors presented participants with some pseudocode that
printed “hello world” backwards and asked what the output
would be. The authors reported that out of the 129 participants
recruited on Qualtrics who stated that they had programming
skill, only 33 gave the correct answer. Since most of the rest of
the study consisted of closed questions, without the program-
ming skill question, the authors would have included many
participants in their data, who were not able to understand a
very simple program.

To enable researchers to be more confident about conduct-
ing online surveys with programmers, we investigated the
research question: Which questions can be used to screen out
participants without any programming skill (while meeting
our requirements of effectiveness, efficiency, and robustness
against cheating)?

We created a survey instrument consisting of questions
which can be used to assess whether a participant actually
has programming skill. The questions are designed to take as
little time as possible so they can be used in free or cheap
pre-screening surveys. They needed to be so easy as to not
annoy or challenge people with programming skill so we do
not falsely reject participants, but also hard enough so that
people without programming skill cannot make an educated
guess or google the answer quickly.

We designed 16 questions of different types and tested them
with different groups of participants: CS students, professional
programmers, students enrolled in a behavioral economics
study platform, as well as participants from Clickworker with
and without self-stated programming skill. We evaluated the
results from these groups to provide a shortlist of questions
which seemed promising as screening questions for developer
studies. To evaluate these questions, we tested them in an
adversarial environment, where we offered non-programmers
an extra monetary incentive to answer them correctly by any
means, including using the Internet. As a final result, we offer
a list of questions we believe can be used to screen non-
programmers out of surveys with only minimal overhead for
the participants with actual programming skill.

II. RELATED WORK

In order to provide context for this field of work, we separate
our related work into two sections. We first outline developer
studies, where recruitment strategies are discussed or chosen
in a way that developers are targeted with a high probability.
Second, we provide insight into other work that either uses
identification and verification mechanisms in the research or
investigates how participants could be tested for programming
skill.

A. Recruitment Strategies

Researchers mostly designed the recruitment process in
such a way that only software developers were targeted, such
as through recruitment of participants on GitHub [7], [9],
[10], [37], [24] or on freelance platforms for developers [14],
[38], [12], [11]. For example, when investigating the effect of
happiness on productivity, Graziotin et al. [37] recruited their
participants by contacting software developers on GitHub [39].
GitHub developers were also recruited for a security developer
study conducted by Acar et al. [10] to investigate how they
perform with regard to security-related tasks. Furthermore,
Meyer et al. [40], when conducting a study on job satisfaction
and productivity of software developers, directly recruited em-
ployees from Microsoft to ensure that all participants indeed
work as software developers.

A number of recruitment strategies were compared by
Baltes and Diehl in [41]. They recruited survey participants
using different approaches: via a personal network, online
networks and communities, directly contacting companies,
public media, survey advertisement by software engineers, and
by using information from GHTorrent [42], which collects
data on public GitHub projects. They concluded that the most
efficient way to recruit is to use public media and asking
software engineers to advertise the survey. Nevertheless, Baltes
and Diehl did raise the question as to whether recruitment
strategies like commercial recruiting services or crowdsourc-
ing platforms (e.g., Amazon Mechanical Turk) are suitable
for developer recruitment, but did not follow up on it, which
we do. Another concern is also raised by Yamashita and
Moonen [38], who discussed the recruitment of freelance
developers for surveys on the platform Freelancer.com. The
authors acknowledged that employers rely on self-reported
skills by members of such platforms. They suggested running
skill assessment tests to ensure the internal validity of research
findings. Our work addresses this issue.

B. Identifying Programming Skill

Bergersen et al. [19] constructed and validated an instrument
for measuring Java programming skill. This was done by
evaluating participants’ performance on programming tasks.
In a study lasting two days, 65 professional developers solved
19 Java programming tasks. Each task had a time limit of
between 10 and 45 minutes. The research goal of Bergersen et
al. was to construct an instrument to find the best programmers
when recruiting for a job or allocating to projects. The task



time of 10-45 minutes is too long for our purpose of screening
participants before a survey.

Feigenspan et al. [43] conducted an experiment with 125
students and compared the self-reported programming expe-
rience with the participants’ performance in solving program
comprehension tasks. They found a correlation between self-
reported experience and performance using a 40 minute survey
instrument. In addition to that, the authors highlighted that
the software-engineering community is lacking a clear def-
inition of programming experience. However, by using this
term, researchers often referred to years a participant was
programming by using a specific programming language or in
general. Interestingly, Bergersen et al. [19] found a correlation
between programming experience and skill, which was largest
during the first year of experience and disappeared after about
four years. While we also used program comprehension tasks
in our study, we did not aim to understand how experience
correlates with performance; our objective was to find a simple
way to exclude participants without programming skill from
online developer studies.

In [25], Balebako et al. conducted a study concerning the
behavior of smartphone app developers in regard to security
and privacy. Potential participants had to fill out a screening
survey to qualify for the interviews. This survey included two
technical questions to test for knowledge of app development.
In addition, the authors verified their findings in a follow-
up online survey with participants recruited on various online
forums. Again, knowledge and attention check questions were
required to be correctly answered by participants. Of the
460 responses, 232 had to be discarded because they did
not fulfill the requirements. We contacted Balebako et al.
and asked for their used screening questions. Unfortunately,
the authors were not able to provide us the exact questions.
However, they remembered to have asked for IDEs participants
have experience with and apps they developed. After that the
authors manually inspected whether the mentioned IDEs or
apps exist. The authors acknowledged that especially the IDE
question was hard to verify, because of the high amount of
IDEs existing “in the wild.” Instead of asking for IDEs, we
therefore decided to provide participants a list of programming
languages including non-existing ones.

In [3], Acar et al. studied the effect of information re-
sources for software development on security by conducting
an online survey and a lab study. For the online survey,
the researchers sent about 50,000 emails to developers they
were able to identify on Google Play. Of the 302 participants
who completed the survey, Acar et al. excluded 7 for invalid
answers. Additional filters to find non-developer participants
were not applied. In the lab study, participants were recruited
based on their experience with app development, having either
completed a course on Android development or with work
experience of at least one year. The participants first had to
complete a short programming task to demonstrate their skills.
However, following complaints that the task took too much
time, they were instead tested with 5 multiple choice questions
covering basic Android development knowledge, at least 3

of which needed to be answered correctly. This is a good
example showing that programming tasks are not well suited as
screening question and that multiple choice questions are more
acceptable. We contacted Acar et al. and learned that their
screening questions specifically covered Android development
knowledge. Since we aimed to identify questions for general
programming skill, we did not include them to our instrument.
However, we included questions affecting developers beyond
Android development, such as error handling.

Danilova et al. [29] investigated the developers’ preferences
about security warnings in IDEs and tested participants’ pro-
gramming skill with a simple pseudocode multiple choice
question. A detailed description of the study can be found
in the Introduction. To further evaluate the used question, we
included it to our question set as Q16.

Assal and Chiasson [13] conducted online surveys to in-
vestigate developers’ software security processes. A section
of their participants were recruited through a paid service
provided by Qualtrics. During survey completion, participants
were provided different descriptions of software security and
were prevented from progressing till they chose the authors’
preferred definition of security. Participants initially providing
incorrect answers were not excluded from evaluation. The
authors wanted to ensure a baseline of security understanding,
rather than to test for software security skill. However, partic-
ipants who provided invalid data or completed the survey too
quickly where excluded from evaluation.

As can be seen there is currently no common approach to
detecting whether participants have programming skill. Each
set of authors come up with their own ideas and no instrument
has been tested in any rigorous manner.

III. METHODOLOGY

In this section, we present the questions we designed to
identify participants with programming skill and the studies
we ran to evaluate it.

A. Instrument Requirements

Unlike Bergersen et al.’s [19] instrument to determine
programming skill which takes two days to complete, our goal
is to assess whether participants have programming skill or not
with as little effort as possible. For the questions to be used in
pre-screening surveys or as quality control questions, we must
ensure that they take people with programming skill only a
few minutes at most to answer. Therefore, our requirements
regarding the instrument were as follows:

• Effectiveness: The instrument should be able to dif-
ferentiate between programmers and non-programmers.
Hence, the questions need to rely on domain knowledge
and be complex enough so that only programmers can
answer in a reasonable amount of time. It should not
leave any scope for mere guesses.

• Efficiency: The instrument should consume as little time
as possible. So, the goal is to frame questions that
programmers can answer quickly. It is also desirable if
it would help the participants without programming skill



TABLE I: Overview of all questions

No Question Abbreviation Category

Q1 Which of these lesser-known programming languages have you worked with before? Unknown.Languages Programming language recognition
Q2 Which of these websites do you most frequently use as aid when programming? Source.Usage Information Sources
Q3 Choose the answer that best fits the description of a compiler’s function. Compiler Basic Knowledge
Q4 Choose the answer that best fits the definition of a recursive function. Recursive Basic Knowledge
Q5 Choose the answer that best fits the description of an algorithm. Algorithm Basic Knowledge
Q6 Which of these values would be the most fitting for a Boolean? Boolean Basic Knowledge
Q7 Please pick all powers of 2. Power.of.2 Basic Knowledge
Q8 Please translate the following binary number into a decimal number 101. Bin.Conv Number Formats
Q9 Please select all even binary numbers. Bin.Even Number Formats

Q10 Please select all valid hexadecimal numbers. Hexa.Num Number Formats
Q11 When multiplying two large numbers, your program unexpectedly returns a negative number. What might have caused this? Error.Overflow Finding Errors
Q12 What is the run time of the following code? Runtime Algorithmic runtime
Q13 When running the code, you get an error message for line 6: Array index out of range. What would you change to fix the problem? Error.OutOfBound Finding Errors
Q14 What is the purpose of the algorithm? Sorting.Array Code Comprehension
Q15 What is the parameter of the function? Function.Param Basic Knowledge
Q16 Please select the returned value of the pseudo code. Backward.Loop Code Comprehension

to decide quickly that they cannot answer the question,
since we do not want to waste their time either.

• Robustness against cheating: The instrument should be
designed in a way that it becomes difficult for participants
without programming skill to come by the answers, for
instance, by using online search engines or forums on
which Clickworkers exchange information about studies.

• Language independence: The instrument should work
regardless of the programming language the participants
are skilled in. While it might also be useful to filter based
on specific languages, that is beyond the scope of this
paper.

B. Survey

We used Dillman’s pre-testing process to develop an online
survey with 16 different questions [44, p.140-147]. The Dill-
man’s pre-testing process is a three-step approach to design
survey questions in general. It includes literature review, using
a think-aloud approach and conducting a pilot study. First, we
reviewed related work and decided on different question types.
We started with a larger pool of questions from related work.
Since these questions rarely met all our requirements (e.g.,
time and effort), three researchers from Computer Science in
different positions (graduate student, PhD student, professor)
developed further questions by considering related work, but
also examining the main concepts of programming. Second,
another researcher went through the questions using a think-
aloud approach. Third, we conducted a pilot study with two
participants. A summary of our questions can be found in
Table I. The full questions can be found in the supplementary
material. A total of 16 questions were created and put under
a number of categories:

• Programming language recognition (Q1): Q1 is a two
part question. The first part asks the participants to self
report their programming language skill for “well-known
programming languages” such as C, C++, or Java. This
part does not need to be evaluated for the instrument.
The second part asks the participants to self-report their
programming language skill for “lesser-known program-
ming languages” such as Torg or Yod. However, all but
one of the lesser known programming languages are fake.
Both the parts offer a “none of the above” option. The

idea behind this question is to see how quickly people
with programming skill select their languages from the
first list and then realize that they do not know any from
the second. Our hypothesis is that they will probably also
realize that most of the names on the second list are fake
and select “none of the above,” while non-programmers
who want to falsely claim skill would select a couple.

• Information sources (Q2): Previous studies have ana-
lyzed what kind of websites developers use while pro-
gramming, with the most popular being Stack Over-
flow [45]. Hence, Q2 contains Stack Overflow and some
decoy options. Participants with programming skill can
quickly pick Stack Overflow, while non-programmers
might not be aware at all.

• Basic knowledge (Q3-Q7, Q15): These questions cover
general programming knowledge, for instance, regarding
what a compiler does, what an algorithm is, and what a
recursive function is.

• Number formats (Q8-Q10): We asked simple questions
related to hexadecimal and binary conversion. Most com-
puter science programs or programming language tutori-
als deal with binary and hexadecimal numbers; hence,
most non-programmers will not have much experience
with this.

• Finding errors (Q11, Q13): A good test of programming
skill would have been asking the participants to actually
write some code; however, that would cost more time
than can be permitted and is hard to automatically verify.
Therefore, as an alternative, we asked the participants to
find errors in code snippets or explain why the errors
occurred.

• Algorithmic runtime (Q12): We also added a basic
question about the run time of some simple pseudocode.

• Program-comprehension (Q14, Q16): We showed the
participants two pseudo-algorithms and asked them about
their functionality and output. It is important to note that
Q16 was taken from the study by Danilova et al. [29].

The questions Q13+Q14 as well as Q15+Q16 are based on
the same pseudocode. Hereafter, we will refer to each pair
of these questions as a “question block.” While we tried to
keep the time spent on each question short, especially for
participants with programming skill, we also had to enable



automatic evaluation and make the questions robust against
random guesses. Thus, we opted for closed multiple choice
questions with 5 to 6 possible answers for each question. Most
questions had one unambiguous correct answer. Exceptions
were 2 of the number-format questions, where participants
were asked to select all correct solutions. The incorrect an-
swers were chosen in a way as to look plausible to participants
without programming skill.

Furthermore, an attention check question [46] appeared
randomly during the survey to filter out careless respondents.
For the attention check question—This is an attention check
question. Please select the answer “Octal”—the correct item
needed to be picked. The questions and answer options were
shown in a randomized order to mitigate response fatigue and
response order effects [47].

We used 2 versions of this survey. The initial version
included “I don’t know” or “I don’t program” answer options.
We included these options because we wanted to minimize
guessing at this stage so we could get an accurate view of
what non-programmers state did not know. The second version
of the survey was conducted in an adversarial setting (see
Section VII-B). Here, the participants were given a monetary
reward for each correct answer and the “I don’t know” or “I
don’t program” options were removed. This setting simulated
a screening setting in which non-programmers might try to
guess the correct answers to take part in a well-compensated
survey.

After completing the programming questions, the partici-
pants were asked to answer demographic questions, including
ones related to their age, job, and programming experience.
The full questionnaire can be found in the supplementary
material. For evaluation and for testing our time requirement,
we set a timer for each question to measure how much time
was spent to solve it.

C. Statistical Testing

We categorized the answers as correct or incorrect. In order
to test whether the different groups had different success
rates for different questions, we used the Fisher’s exact test
(FET) [48, p. 816] on each question. We reported confidence
intervals (CI) and odds ratio (OR) to interpret the details of the
tests. We corrected all Fisher’s exact tests for multiple testing
using the Bonferroni-Holm correction.

To analyze the entire set of questions, we used latent class
analysis, as it is suited the categorical data [49], [50], [51].
The latent class analysis reveals whether the data shows a
number of distinct classes. Our assumption was that we will
get two: participants with and without programming skill. We
tested the models with more classes as well but selected the
one with the lowest Bayesian information criterion (BIC).

D. Participants

Recruitment: We sampled through different channels to
obtain data from different groups. We sampled 17 CS students
using the mailing-list of an advanced programming lecture

from the undergraduate program of our university. As com-
pensation, the students received bonus points for their exam
admission. All the CS students passed our attention check.

Additionally, we invited 49 professional developers from
personal contacts and from a database of professional develop-
ers who took part in our past programming studies and agreed
to take part in future studies. Thirty-five participants completed
the survey. We excluded one from our data set because we
were not able to identify the participant on our invitation list,
and it seemed like that the study link was forwarded. All the
professionals passed our attention check and received 10 euros
for their participation. We combined these two groups to form
our ground truth since we knew for sure that they all have
programming skill.

Next, we recruited 54 students in cooperation with the
behavioral economics group from our university. They have
a recruitment system which sends email invitations for studies
to enrolled users. The majority of them were economics
students; however, others potentially including computer sci-
ence students could have enrolled as well. We refer to these
participants as econ students. Of these 54 participants, 50
passed the attention check. Based on the question of self-
reported programming experience, 10 participants had at least
some (0.5 years) experience. The participants received 5 euros
as compensation.

We also recruited 75 participants from Clickworker, who
did not have any programming skill. Of these 75 participants,
53 passed the attention check and 50 completed the survey.
They received 2.50 euros for their participation.1 However, in
contrast to all other samples, we used the default Clickworker
invitation description which cautions Clickworker participants
that attention check questions needed to be solved correctly
to receive the payment. We accepted this difference since this
is the norm on Clickworker; it is the norm to pay participants
even if they fail the attention check questions on the other
recruiting platforms.

We combined the last two groups as our ground for par-
ticipants without programming skill. However, the situation
is not as clear cut as with the programmers above since CS
students can also be enrolled in the econ platform, and both
econ students and regular Clickworker participants might have
programming skill even though they do not state it. In this
combined group we have 35 out of 100 participants who stated
that they have programming experience. However, since we
have no way of verifying this properly, we did not remove
them from our evaluation, to be on the conservative side.

Further, we recruited 55 Clickworker participants who listed
programming as a skill in their profile. The hiring conditions
were the same as above. Of these 55 participants, 52 passed the
attention check. While the above-mentioned groups were used
to design our screening instrument, we used this last group
as a real-life test to see how many of these would pass our
screening questions.

1This fulfills the minimum wage requirement. Our compensation was higher
than the recommendation of the platform, which was 1.50 euros for 10
minutes.



TABLE II: Demographics of the participants (n = 249)

Group Sample n Gender Age Country of Residence General Programming Experience [years]

Programmer CS students 17 Female: 4, male: 13 min: 19, max: 30, mean: 21.82, md: 20, sd: 3.26 Germany: 17 min: 2, max: 16, mean: 5.31, md: 4.5, sd: 3.41, NA: 1
Professional developers 33 Female: 2, male: 31 min: 25, max: 55, mean: 36.45, md: 36, sd: 8.04 Germany: 31, Austria: 2 min: 2, max: 30, mean: 13.09, md: 15, sd: 7.31

Non-Programmer Econ students 50 Female: 36, male: 13, PNTA: 1 min: 18, max: 28, mean: 22.66, md: 23, sd: 2.3 Germany: 49, NA: 1 min: 0, max: 2, mean: 0.21, md: 0, sd: 0.52
Clickworkers without programming skill 50 Female: 20, male: 29, PNTA: 1 min: 19, max: 67, mean: 34.02, md: 31.5, sd: 10.43 Germany: 21, UK: 8, USA: 6, Other: 15 min: 0, max: 25, mean: 1.63, md: 0.25, sd: 4.1

Test Group Clickworkers with programming skill 52 Female: 10, male: 41, PNTA: 1 min: 18, max: 58, mean: 33.73, md: 31.5, sd: 9.81 Germany: 22, UK: 5, Other: 25 min: 0, max: 30, mean: 6.08, md: 3, sd: 7.78, NA: 1

Attack Scenario Clickworkers without programming skill 47 Female: 18, male: 28, PNTA: 1 min: 19, max: 54, mean: 32.15, md: 30, sd: 9.15 Germany: 16, Italy: 4, Spain: 4, USA: 4, Other: 19 min: 0, max: 26, mean: 2.22, md: 1, sd: 4.82

md: median. PNTA: prefer not to answer. See supplementary material for further details on occupation and country of residence.

Finally, we tested the 8 best questions using an attack
scenario with 51 participants from Clickworker, of whom 47
passed the attention check. We paid a base compensation
of 2 euros to Clickworkers who did not state that they had
programming skill and provided a bonus payment of 2 euros
for each of the 8 correct answers. This should simulate a non-
programmer adversary who wants to pass a screener question
to be able to take part in a well-compensated developer study.

Demographics: The demographics of our tested groups can
be found in Table II. Of all the 249 participants, 155 were
male, 90 were female, and 4 preferred not to answer the
question. From the programmer group and the test group,
almost all participants were male (developer: 44/50 male; test
group: 41/52 male). By contrast, from the non-programmer
group, more participants were female (out of 100: 56 female,
42 male, and 2 preferred not to tell). The majority of the
participants were from Germany.

While professional developers reported to have on average
13.09 years of programming experience (min: 2, max: 30,
median (md): 15, standard deviation (sd): 7.3), CS students
indicated, on average, 5.31 years of experience (min: 2,
max: 16, md: 4.5, sd: 3.41). All the participants from the
programmer group indicated to have worked with Java before.
A total of 31 of the 50 programmer participants indicated to
have worked with JavaScript, 34 with C, 30 with Python, 28
with C++, 22 with PHP, 20 with C#, 19 with Shell, 8 with
Typescript, 3 with Ruby, another 3 with Groovy, and 2 with
Go.

Clickworker participants who claimed to have programming
skill in their profile indicated in our survey to have, on average,
6.08 years of experience (min: 0, max: 30, md: 3, sd: 7.78).
By contrast, Clickworker participants who did not indicate to
have programming skill in their profile reported in the survey
to have, on average, 1.63 years of experience (min: 0, max: 25,
md: 0.25, sd: 4.10). Finally, most of the econ students reported
not to have programming experience at all (mean: 0.21, min:
0, max: 2, sd: 0.52).

IV. ETHICS

The institutional review board of our university approved
our project. The participants of our study were provided with
a consent form outlining the scope of the study and the data
use and retention policies, and we also complied with the
General Data Protection Regulation (GDPR). The participants
were informed of the practices used to process and store their
data, and that they could withdraw their data during or after
the study without any consequences. The participants were

asked to download the consent form for their own use and
information.

V. LIMITATIONS

We compensated each sample differently, as the different
groups had different payment expectations. However, it could
be that the different compensation levels affected the results.
We found a couple of participants in the non-programmer
group who looked like they had programming skill. There
might also have been some with programming skill whom
we did not recognize. However, we think that the number
of programmers that accidentally fell in the non-programmer
group was not significant enough to interfere with our study.
If anything, our instrument’s performance will be under-
reported since we count any unknown programmer in the
non-programmer group who is identified as a programmer
as a failure for our instrument. While we have recruited a
mix of CS students, econ students, professional developers,
and Clickworkers with and without programming skill, we
do not claim that this is representative for all programmers.
Hence, further studies will be needed to extend and validate
our results.

VI. RESULTS

In this section, we describe the effectiveness and efficiency
of our 16 defined screener questions. However, the questions
should also be effective in a way that that the number of
programmers who fail and the number of non-programmers
who either know or guess correctly should be low. Therefore,
we additionally tested our questions with a test group to reduce
our question set to the most promising questions and evaluated
them in an adversarial scenario.

A. Effectiveness

Except for Q1, all Fisher’s exact tests (15/16) were highly
significant even after the Bonferroni-Holm correction. This, in
turn, indicates that the remaining 15 questions were different
in the distributions of correct and incorrect answers between
the non-programmer and programmer groups.

We conducted a latent class analysis on the 16 questions.
We chose a model with two groups (G2(2): 613.02 (Likelihood
ratio/deviance statistic) χ2(2): 174111.9 (Chi-square goodness
of fit), maximum log-likelihood: -907.89, entropy: 6.06), since
the BIC was lower for models with more classes and it fit
well to our assumption. Figure 1 visualizes the proportion
of probabilities for choosing the correct or incorrect items
according to the groups. The predicted class shares were 0.62
for Class 1 (non-programmer) and 0.38 for Class 2 (program-
mer). Thus, according to the class analysis, two classes can



N
on−

P
rogram

m
er

P
rogram

m
er

Q
1:

U
nk

no
w

n.
La

ng
ua

ge
s

Q
2:

S
ou

rc
e.

U
sa

ge

Q
3:

C
om

pi
le

r

Q
4:

R
ec

ur
si

ve

Q
5:

A
lg

or
ith

m

Q
6:

B
oo

le
an

Q
7:

P
ow

er
.o

f.2

Q
8:

B
in

.C
on

v

Q
9:

B
in

.E
ve

n

Q
10

:H
ex

a.
N

um

Q
11

:E
rr

or
.O

ve
rf

lo
w

Q
12

:R
un

tim
e

Q
13

:E
rr

or
.O

ut
O

fB
ou

nd

Q
14

:S
or

tin
gA

rr
ay

Q
15

:F
un

ct
io

n.
P

ar
am

Q
16

:B
ac

kw
ar

d.
Lo

op

Questions

P
ro

po
rt

io
n Correct or incorrect

Pr(Incorrect)

Pr(Correct)

Fig. 1: Plot of latent class analysis with the programmer and
non-programmer groups.

be distinguished within this sample. This fits into our self-
chosen samples, since we had 50 programmers and 100 non-
programmers sampled. Indeed, our questions are applicable to
split a population according to the answers the participants
provided. In the following, we describe the effectiveness of
each question in detail.

Programming Language Recognition (Q1): We found that
almost all the non-programmers (91% or 91 of 100) and
programmers (98% or 49 of 50) answered the question for
lesser-known languages correctly. That means in this case, they
chose the answer “None of the above.” Nine participants from
the non-programmer group and one participant from the pro-
grammer group selected non-existent programming languages.
This shows that without incentive most non-programming
participants had no reason to pick fake languages, although it
is interesting that roughly 10% of non-programmers selected
some of the fake languages.

Information Sources (Q2): All the 50 programmers (100%)
selected Stack Overflow as one of the most used aids for
programming. No other source was reported. Most participants
from the non-programming group reported that they do not
program (60% or 60/100), while 15 said that they do not
use any of the listed websites in the questionnaire for pro-
gramming. Interestingly, 9 participants chose MemoryAlpha, 8
selected Wikipedia, 2 other participants marked LinkedIn and
only 6 participants from the non-programmer group picked
Stack Overflow as their answers.

Basic Knowledge (Q3 to Q7 and Q15): First, we analyzed
the answers given on the description of a compiler (Q3).
All the participants from the programmer group and 33%
participants from the non-programmer group chose the correct
answer. As stated earlier, our non-programmer group is not as
controlled as our programmer group because 35 participants
from the group stated that they had some programming skill.
However, of the 33 correct answers only 23 came from this
group, i.e., 12 participants who stated to have programming
skill did not give the right answer for Q3, whereas 10 who

stated that they had no skill got it right. This similar pattern
that emerged was found in all the knowledge questions with
no clear distinction visible between the two subgroups. Thus,
for simplicity we will not report further on this, but a full
overview can be found in the supplementary material.

Second, we analyzed the answers given on the definition
of a recursive function (Q4). The answers were very similar
to the compiler question. All programmers could answer the
question correctly, whereas 30% of the non-programmers got
the correct answer. The performance for Q5 that was about the
definition of an algorithm (Q5) was even worse, as 47 (out of
100) were able to answer it correctly. One programmer failed
the question. The effect on the boolean question (Q6) was sig-
nificant as well, since all the programmers successfully chose
the correct answer, while only 25% of the non-programmers
answered correctly.

We also included a question (Q7) about the power of two,
since we thought most programmers work with powers of
two. The answers were only marked as correct if all the
powers of two were selected. Two programmers answered
incorrectly, while the rest chose the correct answer. From
the non-programmer group, 41% managed to pick the right
powers of two as well. Furthermore, we asked our participants
to pick what a function’s parameter is (Q15). This question
was answered correctly by all the programmers, while only
13 participants from the non-programmer group selected the
correct answer. It seems that programmers were familiar with
the definition, while the non-programmers struggled to answer
this question correctly.

Number Formats (Q8 to Q10): First, we asked our par-
ticipants to convert a number from the binary system into
the decimal system (Q8). Forty-eight of the 50 programmers
and 38 of 100 non-programmers solved the question correctly.
With regard to picking all the even binary numbers question
(Q9) with multiple answers, 5 programmers failed to select
all the correct answers. However, 34 out of 100 participants
from the non-programmer group got the correct answer. To
test the participants’ knowledge with hexadecimal numbers,
we asked them to select all the valid hexadecimal numbers in
Q10. To get the correct answer, multiple choices needed to
be selected. While the effect of groups on the answers was
again significant, this question seemed to be very challenging
for all the participants. 30% (15 of 50) of the programmers
were unable to solve this question. From the non-programmer
group, only 6 participants succeeded in selecting the correct
answers.

Finding Errors (Q11 and Q13): Fixing bugs takes a large
percentage of a programmer’s working time. With regard to
the question of what could happen if two large numbers
are multiplied and a negative number is returned (Q11), the
difference of the two groups was significant. Forty-seven of the
50 programmers were able to answer this question correctly as
well as 21 of 100 non-programmers. We also investigated the
common errors that programmers face during programming
and requested them to solve an ErrorOutOfBound (Q13). Only
a few non-programmers answered the question correctly (9 of



100). However, the programmers also seemed to have trouble
with this question, because “only” 38 out of 50 selected the
correct answer.

Algorithmic Runtime (Q12): The question for the run-
time seemed to be very difficult for both the groups. We
concluded that even the participants with programming skill
were not very familiar with algorithmic run-times. The effect
of the group variable was significant because the proportion
of correct answers differed between both the groups.

Program-comprehension (Q14 and Q16): Comprehension
of the sorting array pseudocode seemed to be an easier task
for the programmers, because almost all of them answered
Q14 correctly (49 of 50). From the non-programmer group,
24 selected the correct answer. Furthermore, 3 programmers
were unable to solve the “hello world” pseudocode task (Q16)
correctly. Additionally, only 7% of non-programmers choose
the correct answer. Consequently, the difference in correct
answers between both the groups was significant.

B. Efficiency

The participants in the non-programmer group recorded 7.87
minutes as the median time to complete the whole question-
naire, while the participants in the programmer group finished
the survey with a median time of 10.87 minutes. All questions
showed a mean under 100 seconds; thus, all questions fulfilled
our efficiency requirement. We found that answering knowl-
edge questions took the least time, while answering questions
about number conversion took longer. As expected, each of
the two question blocks including pseudocode (Q13+Q14 and
Q15+Q16) took more time as compared to other multiple
choice questions. We found that participants with program-
ming skill needed more time to answer them. The reasons for
this could be that non-programmers selected “I don’t know” or
gave a random answer quickly, since they knew they could not
understand the code. The adversarial measurements in Section
VII-B are more relevant for these questions.

A visualization of the mean times for both programmer
and non-programmer groups according to each task block, an
overview for the number of correct and incorrect answers of
the programmer and non-programmer groups for each question
as well as the statistical analysis summary are available in the
supplementary material.

VII. TESTING THE INSTRUMENT

We tested the instrument in two scenarios: (1) Non-
Adversarial Test group and (2) Adversarial Attack group.
First, we tested our survey instrument with a set of 52
participants from Clickworker who indicated in their profiles
to have programming skill. This scenario is close to how real
studies would be conducted, i.e., researchers use a platform
like Clickworker to recruit participants who state that they
have programming skill. We did not offer significantly higher
compensation to minimize the incentive to claim skill to par-
ticipate in our survey. We also included in the “I don’t know”
options, since we wanted to see how many of the self-reported
programmers from Clickworker would choose that they did not

know answers in a non-adversarial setting. The results also
served for comparison of self-reported programming skill of
the participants from Clickworker with professional developers
from our controlled sample. Later, we selected the most
promising questions and tested them in an adversarial scenario,
where we recruited 47 participants from Clickworker who did
not state to have programming skill. In the introduction, we
explained the goal of our study and asked the participants to
try and pass themselves off as programmers. To incentivize
them, we paid a base fee of 2 euro and an additional 2 euro
for every correct answer for the 8 questions. In this scenario,
we removed the “I don’t know” options because we needed to
evaluate the questions in an adversarial setting and measure
their guessability. This scenario simulates people without any
programming skill trying to break our screener questions to
take part in a well compensated developer study.

A. Non-adversarial Test Group

Programming language skill (Q1): Forty-eight of the 52
participants did not select any imaginary languages when
asked for skill with lesser-known programming languages. The
majority (46) selected “None of the above” and 2 selected
“SHROUD.”

Information sources (Q2): For answering the question for
the most used information sources, 30 of the 52 participants
selected Stack Overflow, while the rest chose that they did not
program or have not used any of the websites suggested (9 of
52). Five chose Wikipedia.

Basic knowledge (Q3 to Q7 and Q15): Forty-one of the
52 participants correctly selected the description of a compiler
(Q3), whereas 11 failed. For the description of a recursive
function (Q4) and the value of a boolean (Q6), 41 selected
the correct answer. For the description of an algorithm (Q5),
only 5 failed to select the correct answer. Forty participants
were able to select all the powers of two (Q7) while 10 did
not. Thirty-three participants selected the function’s parameter
(Q15) correctly.

Number Formats (Q8 to Q10): Forty participants were
able to select the correct answer for a simple binary conversion
(Q8), while 6 selected a wrong answer and another 6 reported
to not know the answer. The multiple response questions
seemed to be more difficult. Thirty-two participants could
correctly select all the even binary numbers (Q9). Further,
only 30 participants selected all the valid hexadecimal numbers
(Q10), while 17 failed or selected “I don’t know” (5).

Error (Q11 and Q13): Thirty-five participants correctly
selected an overflow as source of error in Q11, and 12
participants reported that they did not know the answer and
the rest selected an underflow. For the array out of bound error
(Q13), only 17 of 52 (32%) participants were able to select
the correct solution.

Algorithmic runtime (Q12): The runtime question seemed
to be the hardest one for the participants from the test set. Only
15 answered correctly, 21 did not know the answer and the
rest selected a wrong response.



Non−Programmer Programmer Test Group

0 5 10 15 0 5 10 15 0 5 10 15

0

5

10

15

20

25

30

35

Count of correct answers

%
 p

ar
tic

ip
an

ts
 p

er
 g

ro
up

Fig. 2: Number of correct solutions of all 16 questions per
group.

Program-comprehension (Q14 and Q16): Thirty-one par-
ticipants selected the correct purpose of our sorting array
pseudocode (Q14). Interestingly, only 24 participants selected
the correct output of the hello world pseudocode (Q16),
whereas 13 participants selected the wrong answer “hello
world.”

Comparison of the Groups: Table III shows the correct
answer rates of the programmer, non-programmer, and the
non-adversarial test group for the 16 questions. The test group
(Clickworker who stated that they had programming skill)
always had more correct answers than the non-programmer
group (econ students and non-programmer Clickworkers) but
less than the programmer group (CS students and company
developers). This suggests that some Clickworker participants
do not interpret programming skill the way we do or falsely
indicated in their profile to have programming skill. In either
case, it is important to be able to identify these participants
during screening. Interestingly, 7 participants from this test
group selected “I don’t program,” when we asked for their
level of programming expertise at the end of the survey, despite
listing programming as a skill in their profile. The number of
correct solutions for all the 16 questions per group is visualized
in Figure 2.

B. Attack Scenario

Based on the above findings, we selected the most promising
questions (Q2 to Q4, Q6, Q14, and Q15) by excluding all the
questions that did not achieve a correct answer rate of at least
98% from the programmer group. We also excluded all the
questions where more than 40% of the non-programmer group
gave the correct answer (Table III). We chose these cut-offs
for several reasons. First, we did not require 100% correctness
from the programmers because even programmers make mis-
takes. Additionally, we allowed some false positives from the
non-programmers because we need to keep the questions quick
and simple to not lose programmers to the screening process.
Since, in most scenarios, we would recommend the use of
multiple questions, the false-positive rate will be lower due
to the combination. In addition to the 6 questions mentioned

TABLE III: Percentages of correct answers in each group.

No Question Programmers Non- Test
Programmers Group

Q2 Source.Usage 100% 6% 57.69%
Q15 Function.Param 100% 13% 63.46%
Q6 Boolean 100% 25% 78.84%
Q4 Recursive 100% 30% 78.84%
Q3 Compiler 100% 33% 78.84%

Q14 Sorting.Array 98% 24% 59.61%
Q5 Algorithm 98% 47% 90.38%
Q1 Unknown.Languages 98% 91% 96.15%
Q8 Bin.Conv 96% 38% 76.92%
Q7 Power.of.2 96% 41% 76.92%

Q16 Backward.Loop 94% 7% 46.15%
Q11 Error.Overflow 94% 21% 67.30%
Q9 Bin.Even 90% 34% 61.53%

Q12 Runtime 80% 6% 28.74%
Q13 Error.OutOfBound 76% 9% 32.69%
Q10 Hexa.Num 70% 6% 57.69%

The table is sorted descended by the column “Programmers” and
ascended by the column “Non-Programmers,” because the most
promising questions require to be correctly answered by program-
mers and incorrectly by non-programmers.

above, we included Q1 and Q16 to our set of most promising
questions because we expected them to perform better in the
attack scenario. After each question, we asked the participants
whether they looked up the answer on the Internet or solved
it on their own (see supplementary material for more details).

Programming language skill (Q1): In the adversarial
setting, we tested Q1 in two versions: 1) both parts of the
questions (real and fake programming languages) and 2) on its
own (only fake programming languages). Both versions were
ineffective with only 4 of 18 in version 1 and 3 of 29 in version
2 where the participants chose non-existent programming
languages. Our assumption that non-programmers would pick
these turned out to be false.

Sources (Q2): Twenty-nine of the 47 Clickworkers (61%)
reported “Stack Overflow” to be their most used information
source for programming. Six chose ”None of the above,” while
7 chose “Wikipedia” and 5 “MemoryAlpha.”

Compiler’s function (Q3): Thirty-six of the 47 participants
(76%) chose the correct answer for the functionality of a
compiler.

Recursive function (Q4) and boolean (Q6): 76% (36
of 47) participants correctly defined a recursive function and
answered the value that a boolean can take.

Sorting array (Q14): Twenty-nine of the 47 participants
(62%) answered the sorting algorithm question correctly. This
might be the first indication of algorithms being more difficult
for the participants without programming skill to look up.

Parameter of a function (Q15): Thirteen of the 47 partic-
ipants (27%) selected the correct answer.

Hello World (Q16): 25% of Clickworkers (12 of 47) picked
the correct answer for the hello world question.

Our analysis showed that Q15 and Q16 performed best
according to the correct answer rates in the attack scenario.
Figure 3 shows the time taken to solve the questions correctly
for the programmer and the attack groups. We excluded Q1



TABLE IV: Overview of screening question recommendations for programming skill

Question Recommended Suggested time limit [seconds] Excluded programmers
with time limit (n = 50)

Attackers (n = 47)
(included|excluded)

Q1 7 - - -
Q2 3 30 2 10|19
Q3 3 60 3 22|14
Q4 3 30 4 8|28
Q6 3 30 0 14|22

Q14 7 - - -
Q15 3 Not necessary - -
Q16 3 Not necessary - -

The table shows an overview of our recommendations for the eight questions tested in the attack scenario. Colors: red =
not recommended, green = recommended without restrictions, yellow = recommended but with time limit

Q6: Boolean

Q4: Recursive

Q3: Compiler

Q2: Source.Usage

0 100 200 300
Time[seconds]

Q
ue

st
io

n

Group
Attack
Programmer

Fig. 3: Comparison knowledge questions: Time to solve each
question correctly.

since we tested 2 versions of this question, as described
above, and the question performed so poorly that it was not
considered. We also did not directly compare Q14, Q15, and
Q16 to the original questions since, in the prior analysis,
they were part of a question block. In the attack scenario,
we split them in order to get the information for each
question whether participants googled the answers or not.
All knowledge questions, except Q2 (p = 0.054), showed a
significant time difference (wilcoxon rank sum test) between
the developer and attacker groups, with the attackers taking
significantly longer.

VIII. DISCUSSION AND RECOMMENDATIONS

When conducting our non-adversarial evaluation with the
Clickworker test group, we only selected participants whose
profiles included programming skill. The results of this test
group demonstrated that for the kind of developer studies that
are common in our community, it is not recommendable to
rely on the self-reported programming skill or a platform’s
recruitment features. In our test set, 42% of the Clickworker
programmers got fewer correct answers than the poorest
performers in our ground truth programmers group. They

mostly got all the answers right while many Clickworker
developers got less than half right answers. Considering the
small sample sizes, which are common in developer studies,
even a small amount of noise can mask true effects or worse
create false effects. Having potentially one-third participants
without programming skill in a developer survey can cause sig-
nificant disruption, and we highly recommend using screening
questions to avoid this. The fact that we removed 10 of our 16
questions, since they proved to be less effective than we had
hoped, suggests that the current practice of some researchers
creating and using untested screener questions is sub-optimal.
We hope that our tested questions can be a first step toward
creating a common screener instrument for our community.

We recommend the use of screener questions for studies tar-
geting people with programming skill, especially if these stud-
ies do not contain a programming task. Table IV summarizes
our screener question recommendations. The most effective
but also the slowest questions were the code comprehension
questions, i.e., Q15 and Q16. If time penalty is acceptable, we
recommend using these or similar questions as screeners. If
this is not feasible, we recommend to randomly use one of the
four knowledge questions (Q2 to Q4 and Q6) with a time limit,
since our attack group demonstrated that these question can be
looked up. The time limit can be used to configure the false
rejection participants with programming skill and the false
acceptance of those without. We recommend a 30-seconds
time limit for Q2, Q4, and Q6 and a 60-seconds time limit
for Q3. In supplementary material, we provide details of how
we chose these time limits. Figure 4 shows the distribution
over the 6 recommended questions of correct solutions in the
groups with the time limits applied.

IX. CONCLUSION

In previous online studies with programmers, researchers
often relied on participants’ claims to have programming skill
or they used programming tasks or programming knowledge
questions to verify these. Our work showed, however, that
designing programming screener questions is not trivial and
we would not recommend using questions without testing them
before. While we raised a methodological problem in software-
engineering work on a meta-level, we also contributed concrete
and validated screener questions on a primary level.



Attack Non−Programmer Programmer Test Group

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

0

20

40

60

80

Count of correct answers

%
 o

f p
ar

tic
ip

an
ts

 p
er

 g
ro

up

Fig. 4: Distribution of correct solutions of all 6 recommended
questions per group with time limits applied as in Table IV.

We surveyed a total of 249 people to find questions that can
be used to filter participants with programming skill. To get a
ground truth sample of programmers, we selected participants
for whom we were able to verify that they actually have
any programming skill. We, then, recruited non-programmers
and Clickworkers with and without self-reported programming
skill to test our screening instrument. Finally, we tested our
instrument under adversarial conditions to test its robustness.
Based on our evaluation, we recommend 6 of our 16 screener
questions for use in online studies.

In future work, we will continue to expand and test our
question set. While the small set is sufficient to protect against
non-adversarial participants, who simply have a different in-
terpretation what programming is than we do, a larger set will
be more robust in an adversarial setting.

ACKNOWLEDGMENTS

This work was partially funded by the ERC Grant 678341:
Frontiers of Usable Security.

REFERENCES

[1] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand, and
M. Smith, “Why Do Developers Get Password Storage Wrong?: A
Qualitative Usability Study,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS’17.
New York, NY, USA: ACM, 2017, pp. 311–328. [Online]. Available:
https://doi.acm.org/10.1145/3133956.3134082

[2] A. Naiakshina, A. Danilova, C. Tiefenau, and M. Smith, “Deception
Task Design in Developer Password Studies: Exploring a Student
Sample,” in Fourteenth Symposium on Usable Privacy and Security
(SOUPS’18). Baltimore, MD: USENIX Association, 2018, pp. 297–
313. [Online]. Available: https://www.usenix.org/conference/soups2018/
presentation/naiakshina

[3] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and
C. Stransky, “You Get Where You’re Looking for: The Impact of
Information Sources on Code Security,” in 2016 IEEE Symposium on
Security and Privacy (SP’16), 2016, pp. 289–305. [Online]. Available:
https://doi.org/10.1109/SP.2016.25

[4] L. Ponzanelli, S. Scalabrino, G. Bavota, A. Mocci, R. Oliveto,
M. Di Penta, and M. Lanza, “Supporting Software Developers with a
Holistic Recommender System,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE’17). IEEE, 2017, pp. 94–
105.

[5] A. C. Williams, H. Kaur, S. Iqbal, R. W. White, J. Teevan, and A. Four-
ney, “Mercury: Empowering Programmers’ Mobile Work Practices with
Microproductivity,” in Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology (UIST’19), 2019, pp. 81–94.

[6] Y. Chen, S. Oney, and W. S. Lasecki, “Towards Providing On-Demand
Expert Support for Software Developers,” in Proceedings of the 2016
Conference on Human Factors in Computing Systems (CHI’16), 2016,
pp. 3192–3203.

[7] C. Wijayarathna and N. A. G. Arachchilage, “Why Johnny Can’t
Store Passwords Securely? A Usability Evaluation of Bouncycastle
Password Hashing,” in Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering
2018, ser. EASE’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 205–210. [Online]. Available: https:
//doi.org/10.1145/3210459.3210483

[8] L. Sousa, R. Oliveira, A. Garcia, J. Lee, T. Conte, W. Oizumi,
R. de Mello, A. Lopes, N. Valentim, E. Oliveira et al., “How Do
Software Developers Identify Design Problems? A Qualitative Analysis,”
in Proceedings of the 31st Brazilian Symposium on Software Engineering
(SBES’17), 2017, pp. 54–63.

[9] P. L. Gorski, L. L. Iacono, D. Wermke, C. Stransky, S. Möller, Y. Acar,
and S. Fahl, “Developers Deserve Security Warnings, Too: On the
Effect of Integrated Security Advice on Cryptographic API Misuse,”
in Fourteenth Symposium on Usable Privacy and Security (SOUPS’18),
2018, pp. 265–281.

[10] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl, “Secu-
rity Developer Studies with GitHub Users: Exploring a Convenience
Sample,” in Thirteenth Symposium on Usable Privacy and Security
(SOUPS’17), 2017, pp. 81–95.

[11] A. Naiakshina, A. Danilova, E. Gerlitz, E. von Zezschwitz,
and M. Smith, “‘If You Want, I Can Store the Encrypted
Password’: A Password-Storage Field Study with Freelance Developers,”
in Proceedings of the 2019 Conference on Human Factors in
Computing Systems, ser. CHI’19. New York, NY, USA: ACM,
2019, pp. 140:1–140:12. [Online]. Available: https://doi.acm.org/10.
1145/3290605.3300370

[12] J. Bau, F. Wang, E. Bursztein, P. Mutchler, and J. C. Mitchell, “Vul-
nerability Factors in New Web Applications: Audit Tools, Developer
Selection & Languages,” Stanford, Tech. Rep, 2012.

[13] H. Assal and S. Chiasson, “’Think Secure from the Beginning’: A
Survey with Software Developers,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, ser. CHI’19.
New York, NY, USA: ACM, 2019, pp. 289:1–289:13. [Online].
Available: https://doi.acm.org/10.1145/3290605.3300519

[14] A. Yamashita and L. Moonen, “Do Developers Care about Code Smells?
An Exploratory Survey,” in 2013 20th Working Conference on Reverse
Engineering (WCRE’13). IEEE, 2013, pp. 242–251.

[15] A. Naiakshina, A. Danilova, E. Gerlitz, and M. Smith, “On Conducting
Security Developer Studies with CS Students: Examining a Password-
Storage Study with CS Students, Freelancers, and Company Devel-
opers,” in Proceedings of the 2020 Conference on Human Factors in
Computing Systems (CHI’20), 2020, pp. 1–13.

[16] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On the Dichotomy
of Debugging Behavior Among Programmers,” in Proceedings of the
40th International Conference on Software Engineering (ICSE’18),
2018, pp. 572–583.

[17] D. Spadini, G. Çalikli, and A. Bacchelli, “Primers or Reminders? The Ef-
fects of Existing Review Comments on Code Review,” in Proceedings of
the 42nd International Conference on Software Engineering (ICSE’20),
2020.

[18] P. M. Fitts and M. I. Posner, “Human performance.” 1967.
[19] G. R. Bergersen, D. I. Sjøberg, and T. Dybå, “Construction and

Validation of an Instrument for Measuring Programming Skill,” IEEE
Transactions on Software Engineering (IEEE Trans. Softw. Eng’14),
vol. 40, no. 12, pp. 1163–1184, 2014.

[20] V. J. Shute, “Who is Likely to Acquire Programming Skills?” 1991.
[21] J. R. Anderson, “Skill Acquisition: Compilation of Weak-Method Prob-

lem Situations.” Psychological review, vol. 94, no. 2, p. 192, 1987.
[22] J. R. Anderson, F. G. Conrad, and A. T. Corbett, “Skill Acquisition and

the LISP Tutor,” Cognitive Science, vol. 13, no. 4, pp. 467–505, 1989.
[23] J. R. Anderson, R. Farrell, and R. Sauers, “Learning to Program in

LISP,” Cognitive Science, vol. 8, no. 2, pp. 87–129, 1984.
[24] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and

C. Stransky, “Comparing the Usability of Cryptographic APIs,” in 2017

https://doi.acm.org/10.1145/3133956.3134082
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1145/3210459.3210483
https://doi.org/10.1145/3210459.3210483
https://doi.acm.org/10.1145/3290605.3300370
https://doi.acm.org/10.1145/3290605.3300370
https://doi.acm.org/10.1145/3290605.3300519


IEEE Symposium on Security and Privacy (SP’17). IEEE, 2017, pp.
154–171.

[25] R. Balebako, A. Marsh, J. Lin, J. I. Hong, and L. F. Cranor, “The Privacy
and Security Behaviors of Smartphone App Developers,” 2014.

[26] L. Prechelt, “Plat Forms: A Web Development Platform Comparison
by an Exploratory Experiment Searching for Emergent Platform Prop-
erties,” IEEE Transactions on Software Engineering, vol. 37, no. 1, pp.
95–108, 2011.

[27] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through
Hoops: Why Do Java Developers Struggle with Cryptography APIs?”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 935–946. [Online]. Available:
https://doi.org/10.1145/2884781.2884790

[28] D. Votipka, D. Abrokwa, and M. L. Mazurek, “Building and Validating
a Scale for Secure Software Development Self-Efficacy,” in Proceedings
of the 2020 Conference on Human Factors in Computing Systems
(CHI’20), 2020, pp. 1–20.

[29] A. Danilova, A. Naiakshina, and M. Smith, “One Size Does Not Fit All:
A Grounded Theory and Online Survey Study of Developer Preferences
for Security Warning Types,” in Proceedings of the 42nd International
Conference on Software Engineering (ICSE’20), 2020.

[30] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and
T. Zimmermann, “Quantifying Developers’ Adoption of Security Tools,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE’15), 2015, pp. 260–271.

[31] S. Sheth, G. Kaiser, and W. Maalej, “Us and Them: A Study of Privacy
Requirements Across North America, Asia, and Europe,” in Proceed-
ings of the 36th International Conference on Software Engineering
(ICSE’14), 2014, pp. 859–870.

[32] L. L. Iacono and P. L. Gorski, “I Do and I Understand. Not Yet True
for Security APIs. So Sad,” in Proc. of the 2nd European Workshop on
Usable Security, ser. EuroUSEC’17, vol. 17, no. 04, 2017.

[33] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl, “To Pin or Not
to Pin—Helping App Developers Bullet Proof Their TLS Connections,”
in 24th USENIX Security Symposium (USENIX Security’15), 2015, pp.
239–254.

[34] D. S. Oliveira, T. Lin, M. S. Rahman, R. Akefirad, D. Ellis, E. Perez,
R. Bobhate, L. A. DeLong, J. Cappos, Y. Brun, and N. C. Ebner, “API
Blindspots: Why Experienced Developers Write Vulnerable Code,” in
Proceedings of the Fourteenth USENIX Conference on Usable Privacy
and Security, ser. SOUPS’18. USA: USENIX Association, 2018, p.
315–328.

[35] “Clickworker,” https://www.clickworker.de/, Accessed: January 2020.
[Online]. Available: https://www.clickworker.de/

[36] “Qualtrics,” https://www.qualtrics.com, Accessed: January 2020.
[Online]. Available: https://www.qualtrics.com

[37] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “Unhappy
Developers: Bad for Themselves, Bad for Process, and Bad for Software
Product,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C’17). IEEE, 2017, pp. 362–364.

[38] A. Yamashita and L. Moonen, “Surveying Developer Knowledge and
Interest in Code Smells through Online Freelance Marketplaces,” in
2013 2nd International Workshop on User Evaluations for Software
Engineering Researchers (USER’13). IEEE, 2013, pp. 5–8.

[39] “Github,” https://github.com/, Accessed: January 2020. [Online].
Available: https://github.com/

[40] A. Meyer, E. T. Barr, C. Bird, and T. Zimmermann, “Today was a Good
Day: The Daily Life of Software Developers,” IEEE Transactions on
Software Engineering (IEEE Trans. Softw. Eng.’19), 2019.

[41] S. Baltes and S. Diehl, “Worse Than Spam: Issues In Sampling
Software Developers,” in Proceedings of the 10th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM’16), 2016, pp. 1–6.

[42] “Ghtorrent,” https://ghtorrent.org/, Accessed: January 2020. [Online].
Available: https://ghtorrent.org/

[43] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg,
“Measuring programming experience,” in 2012 20th IEEE International
Conference on Program Comprehension (ICPC’12). IEEE, 2012, pp.
73–82.

[44] D. A. Dillman, Mail and Internet surveys: The tailored design method–
2007 Update with new Internet, visual, and mixed-mode guide. John
Wiley & Sons, 2011.

[45] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack Overflow Considered Harmful? The Impact of Copy
Paste on Android Application Security,” in 2017 IEEE Symposium on
Security and Privacy (SP’17), May 2017, pp. 121–136.

[46] F. Y. Kung, N. Kwok, and D. J. Brown, “Are Attention Check Questions
a Threat to Scale Validity?” Applied Psychology, vol. 67, no. 2, pp. 264–
283, 2018.

[47] P. J. Lavrakas, Encyclopedia of survey research methods. Sage
Publications, 2008.

[48] A. Field, J. Miles, and Z. Field, Discovering statistics using R. Sage
publications, 2012.

[49] A. L. McCutcheon, Latent class analysis. Sage, 1987, no. 64.
[50] L. M. Collins and S. T. Lanza, Latent class and latent transition analysis:

With applications in the social, behavioral, and health sciences. John
Wiley & Sons, 2009, vol. 718.

[51] D. A. Linzer, J. B. Lewis et al., “poLCA: An R package for polytomous
variable latent class analysis,” Journal of statistical software (J. Stat.
Softw.’11), vol. 42, no. 10, pp. 1–29, 2011.

https://doi.org/10.1145/2884781.2884790
https://www.clickworker.de/
https://www.clickworker.de/
https://www.qualtrics.com
https://www.qualtrics.com
https://github.com/
https://github.com/
https://ghtorrent.org/
https://ghtorrent.org/

	I Introduction
	II Related Work
	II-A Recruitment Strategies
	II-B Identifying Programming Skill

	III Methodology
	III-A Instrument Requirements
	III-B Survey
	III-C Statistical Testing
	III-D Participants

	IV Ethics
	V Limitations
	VI Results
	VI-A Effectiveness
	VI-B Efficiency

	VII Testing the Instrument
	VII-A Non-adversarial Test Group
	VII-B Attack Scenario

	VIII Discussion and Recommendations
	IX Conclusion
	References

