
On Conducting Security Developer Studies with CS
 
Students: Examining a Password-Storage Study with CS
 

Students, Freelancers, and Company Developers
 

Alena Naiakshina1, Anastasia Danilova1, Eva Gerlitz2, Matthew Smith1,2 

1University of Bonn, 2Fraunhofer FKIE, Germany 
{naiakshi, danilova, gerlitz, smith}@cs.uni-bonn.de 

ABSTRACT 
Ecological validity is a major concern in usable security stud
ies with developers. Many studies are conducted with com
puter science (CS) students out of convenience, since recruit
ing professional software developers in sufficient numbers is 
very challenging. In a password-storage study, Naiakshina 
et al. [28] showed that CS students behave similarly to free
lance developers recruited online. While this is a promising 
result for conducting developer studies with students, an open 
question remains: Do professional developers employed in 
companies behave similarly as well? To provide more insight 
into the ecological validity of recruiting students for secu
rity developer studies, we replicated the study of Naiakshina 
et al. with developers from diverse companies in Germany. 
We found that developers employed in companies performed 
better than students and freelancers in a direct comparison. 
However, treatment effects were found to be significant in 
all groups; the treatment effects on CS students also held for 
company developers. 

Author Keywords 
Security Developer Study; Developer Password Study; Usable 
Security and Privacy; Student Developer 

CCS Concepts 
•Human-centered computing → Empirical studies in HCI;
•Security and privacy → Usability in security and privacy;

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
CHI ’20, April 25–30, 2020, Honolulu, HI, USA. 
© 2020 Copyright is held by the author/owner(s).
 
ACM ISBN 978-1-4503-6708-0/20/04.
 
http://dx.doi.org/10.1145/3313831.3376791
 

INTRODUCTION 
Usable security and privacy research that focuses on the end 
user has been conducted for over 20 years. However, there 
is only limited knowledge on the human factor in “software 
development” within the security ecosystem at present [18]. 
In their research agenda, Acar et al. [5] argued that ecological 
validity issues are a major concern of usable security studies 
with developers. Similar to end-user goals [7, 40, 39, 48], 
security is considered as a secondary task by software develop
ers [4, 29, 30, 28]. They are rarely security experts [18], and 

therefore task design in security developer studies can have 
a large influence on developers’ programming practices [29, 
30, 28]. Furthermore, the recruitment of professional software 
developers for research studies is challenging due to lack of 
time, spread out geographical locations, and high cost [5, 24, 
42, 4, 6, 23, 51]. Consequently, previous conducted security 
software engineering research recruited computer science (CS) 
students, who are often studied out of convenience [29, 30, 4, 
10, 36, 23, 51]. While there is evidence that students behave 
similarly to professionals in software engineering studies [20, 
11, 25, 44, 38], only limited knowledge exists on whether 
this holds true for security developer studies. In 2019, Na
iakshina et al. [28] conducted a security developer study and 
found that CS students and freelancers showed similar behav
ior with regard to secure password storage. One open question 
remains: Do professional software developers employed in 
organizations and companies behave similarly to CS students 
and freelance developers in the security software engineering 
context as well? 

In order to offer more insights into the ecological validity of se
curity developer studies, we replicated the study of Naiakshina 
et al. [28] with employed professional software developers. 
We henceforth refer to these people as “company developers.” 
With [28] being a follow-up study of [29, 30], we present in 
Table 1 an overview of the previous studies and this study. 
In 2017 and 2018, Naiakshina et al. [29, 30] asked computer 
science students to program the registration functionality for a 
university social platform in a laboratory setting. Half of the 
participants were asked to consider password-storage security 
(security prompting), while the other half were told the study 
is about Application Programming Interfaces (API) usability. 
Additionally, half the participants were advised to use the Java 
based application framework Spring [2], which offers sup
porting libraries for secure password storage, while the other 
half used JavaServer Faces (JSF) [1] without any supporting 
libraries. Both the variables prompting and framework had 
a significant effect on secure solutions.1 Participants using 
Spring achieved higher security scores than participants using 
JSF. Further, none of the CS students stored user passwords 
securely, unless they were prompted. However, some students 
claimed they would have considered security if they had been 
given the task in a company. In order to find out whether these 
results were a study artifact, the authors replicated the study 

1After the Bonferroni-Holm correction, the difference between the 
two groups was not flagged as significant for the framework variable. 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 1

This work is licensed under a Creative Commons Attribution International 4.0 License.

http://dx.doi.org/10.1145/3313831.3376791
mailto:smith}@cs.uni-bonn.de
https://creativecommons.org/licenses/by/4.0/


CS Students [29, 30] Freelancers [28]	 Company Developers 

Independent Variables (IV)	 IV1: Security prompting (yes/no) IV1: Security prompting (yes/no) IV1: Security prompting (yes/no) 
IV2: Framework (JSF/Spring) IV2: Payment (100/200 euros) IV2: Framework (JSF/Spring) 

Dependent Variables (DV)	 DV1: Secure (yes/no) DV1: Secure (yes/no) DV1: Secure (yes/no) 
DV2: Security score (0-7) DV2: Security score (0-7) DV2: Security score (0-7) 
DV3: API Usability scale from [3] DV3: API Usability scale from [3] 
DV4: Functionality (yes/no) 

Study Setting	 Laboratory study Field online study Online study 
Study Context and Task	 University researchers Start-up University researchers 

University social networking platform Sports photo sharing social networking platform Sports photo sharing social networking platform 
Study Announcement	 Yes No Yes 
Recruitment	 University Freelancer.com Company, Xing 
Country of Participants’	 Germany International Germany 
Residence	 Primary from India, China or Pakistan 
Compensation	 100 euros for programming task 100/200 euros for programming task 400 euros for programming task 

and survey and 20 euros for survey and survey 
Security Request After	 No SecRequest-P if plain text submission SecRequest-P if plain text submission 
Initial Submission	 SecRequest-G if security score < 6 

Table 1: Comparison of password-storage studies conducted with CS students [29, 30], freelancers [28], and company developers. 

in 2019 with freelance developers recruited online on Free
lancer.com [28]. The framework variable was not investigated 
since all participants were asked to use the JSF framework. 
Within their pilot studies, the authors recognized that the uni
versity context of their study led participants to think they were 
solving a homework task for university credits. Therefore, the 
authors changed the study context. This time, the authors 
claimed to be a start-up who lost a developer and needed help 
with the registration functionality of their sports photo sharing 
social network platform. Although the study purpose was not 
revealed to the freelancers, they behaved similarly to the CS 
students. The authors concluded that both samples – the CS 
students in the lab and the freelance developers in the field 
– behaved the same with regard to security prompting and 
password-storage practices. 

In this paper, we extended Naiakshina et al.’s work by conduct
ing an online study with 36 regularly employed professional 
software developers. Like Naiakshina et al. [28], we told half 
the participants to store end-user passwords securely, while 
the other half were told the study focused on API usability. In 
order to ensure that our study appeared real and meaningful 
to the subjects (experimental realism) [42], we refrained from 
the university context and opted for the start-up scenario. We 
adopted the study design of the freelancer study [28] with some 
necessary modifications. First, in the context of a freelance 
service, it was possible to hire developers for the programming 
task without revealing the study purpose. However, it was not 
realistic to maintain this pretense for regular professional soft
ware developers. Thus, we announced the project as a study. 
In the Methodology section we discuss the reasons for this 
in detail. Second, like Naiakshina et al. [30], we examined 
the variable framework with the new sample of professional 
developers. 

With this paper, we contribute on a primary level by comparing 
password-storage practices across different developer samples: 
students, freelancers, and company developers. In addition, 
we discuss methodological implications for security developer 
studies on a meta-level. As suggested by Sjoberg et al. [42], 
for the primary level analysis, we compared the results of 
students, freelancers, and professionals in absolute terms. For 

the meta-level analysis, we compared the results in relative 
terms. Based on the primary level analysis, we found that 
company developers overall performed better than students 
with regard to security measures. However, the meta-level 
analysis showed that the treatment effects of task design and 
framework were found to be significant in all groups. We refer 
to treatments as “prompting” vs. the baseline “non-prompting” 
and the Spring framework vs. the baseline plain Java (JSF). 

RELATED WORK 
While observations of studies conducted with students are 
assumed to apply to professional developers in the domain 
of software engineering [20, 11, 44, 38], it is not known for 
certain yet on whether this holds true for security developer 
studies [51, 4, 6, 23, 28]. To place our study in context, 
the following section is divided into three parts. First, we 
outline security studies with students. Second, we discuss 
related work in the area of security studies with professional 
developers. Finally, we summarize those works that compared 
behavior of students and professional developers in security 
studies. Most important for our work are the studies conducted 
by Naiakshina et al. with freelance developers [28] and CS 
students [29, 30], which were described in the Introduction 
and with this study being a replication of [28] with minor 
changes as described in the Methodology section. 

Security Studies with Students 
As the recruitment of professional software developers is of
ten very challenging due to high costs or lack of time, many 
studies have instead been conducted with CS students. For 
example, Thomas et al. [46] studied if interactive annotation 
was useful for developers in indicating access control logic 
and understanding the ensuing reported security vulnerabili
ties. They recruited 28 CS students and found that participants 
struggled to use the researchers’ tools to trace the cause of 
vulnerabilities. 
Jain et al. [21] explored developers’ behavior regarding loca
tion privacy in mobile applications when provided with differ
ent location APIs. They recruited 25 CS students to work on 
three programming tasks and found that participants preferred 
the more privacy-friendly API when given a choice. Further
more, to understand how developers use error-messages, Barik 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 2

http:lancer.com
http:Freelancer.com


et al. [10] conducted an eye-tracker-study with 56 students 
who were asked to resolve defects in Java code. The authors 
found that reading error messages was as difficult as reading 
source code. Both Jain et al. [21] and Barik et al. [10] argued 
to specifically have recruited students to avoid the unrealized 
bias of professionals being familiar with APIs. 
Layman et al. [26] recruited 18 CS students to investigate fac
tors influencing developers when deciding whether or not to 
fix a fault after being notified by an automated fault detection. 
Based on their finding, the authors provided recommendations 
regarding automated fault detection tools. Furthermore, Scan
dariato et al. [41] conducted a controlled experiment with 9 
graduate students and found static analysis to uncover more 
vulnerabilities in a shorter time in comparison to penetration 
testing. In order to approve the external validity of their find
ings, Layman et al. [26] and Scandariato et al. [41] advised to 
recruit professional developers for future work. 

Security Studies with Developers 
Myers and Stylos [27] summarized related work on evaluating 
API usability and highlighted that usability issues with APIs 
can affect the security of software. Thus, they encouraged to 
conduct user studies. One related usability study on password 
storage was conducted by Wijayarathna and Arachchilage [49] 
with 10 GitHub developers. The authors evaluated the us
ability of Bouncycastle API’s functionality of the password 
hashing function SCrypt. On observing 63 usability issues, 
the authors found that most of the difficulties arose from the 
complexity of the method’s parameters. In accordance with 
our findings, they concluded that developers usually are not 
security experts and thus they should be provided appropriate 
guidelines, especially in organizational scenarios. 
Another study analyzing the security, reliability, and function
ality of web applications was conducted by Prechelt [37] with 
27 experienced developers. Three groups of participants had 
to implement similar tasks using different platforms. PHP 
showed fewer noticeable variations than Perl or Java EE. Try
ing to find out more reasons why programmers make security 
errors, Jing et al. [50] conducted 15 semi-structured inter
views with developers who were experienced in Java, C++, 
C, Python, PHP, and JavaScript. The authors implied that 
developers need more interactive tools to assist them in imple
menting security measures. 
Johnson et al. [22] conducted 20 interviews with professional 
developers and found that false positives and poor warning 
visualization are reasons for not using static analysis tools. 
Furthermore, Thomas et al. [47] conducted a study with 13 
participants with professional development expertise and sug
gested a tool for effectively communicating security vulnera
bilities. 
Balebako et al. [9] conducted an online survey with 228 app de
velopers and found that smaller companies (<=30 employees) 
were less likely to demonstrate positive privacy and security 
behaviors compared to larger companies with 31-100 or 100+ 
employees. By contrast, Assal et al. [8] conducted an online 
survey with 123 software developers and found no evidence 
that company size has an influence on participants’ behaviors 
and attitudes towards software security. However, a workplace 
environment that nurtures security was more motivating to con

sider security for participants in larger companies, compared 
to those in smaller companies. We, therefore, also examined 
whether the size or security focus of a company affected par
ticipants’ decision to store user passwords securely, but found 
no significant effect. 

Student and Developer Comparison in Security Studies 
Acar et al. [4] conducted a lab study with 54 Android devel
opers to explore the impact of information sources on code 
security and found that professionals produced more func
tional code than students. However, with regard to security, 
no significant effect was found. In a further study of Acar 
et al. [6], 307 GitHub users were given short security related 
tasks, inter alia, to store user passwords in a database. The 
authors found that neither student nor professional status (self
reported) was a significant factor for functionality, security, 
security background or security perception. 
Krombholz et al. [23] attempted to find reasons for weak TLS 
configurations. Their expert interviews with security auditors 
underlined the ecological validity of their results from a lab 
study conducted with students. 
What is more, Nguyen et al. [36] recruited skilled students and 
professional developers to examine whether an IDE plug-in 
could help developers write more secure Android applications. 
Except for the professional developers’ smaller motivation in 
taking part in their study, the authors did not find any signifi
cant differences between the samples. 
Yakdan et al. [51] measured the quality of decompilers for 
malware analysts by asking 21 students and 9 professional 
malware analysts to work on reverse engineering tasks using 
three decompilers. Unlike in the previously-mentioned papers, 
they noticed significant differences in the performance of stu
dents and professionals. However, the overall assumption of 
which decompiler performed best remained the same for both 
samples. 
In contrast to the previous studies and in accordance with 
Yakdan et al.’s [51] findings, our study results showed that 
professionals’ and students’ security behavior was different 
in absolute terms. However, we found similarities in relative 
terms. 

METHODOLOGY 
We conducted an online study of password storage with 36 
professional software developers employed by different com
panies and organizations. We adopted the methodology and 
study design frame from a previous study of password storage 
with freelancers [28]; that study replicated yet a lab study with 
computer science students [30]. These studies were described 
in more detail in the introduction. 

The recruitment of professional developers posed new chal
lenges not faced in Naiakshina et al.’s [28] study of freelancers, 
but it presented new opportunities as well. Some adjustments 
were made to the study frame for this specialized sample. In 
order to ensure that our study design decisions were reason
able, we consulted an IT-company with 250 employees from 
Germany. To preserve confidentiality, this company is here 
referred to as “ITXcompany.” We opted for the same online 
study design used in the freelancers study [28]. In that study, 
freelancers were hired to work on the study and could do so 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 3



during their normal working hours. In our study, however, 
company developers were not supposed to take part in studies 
during their working hours; they had to participate during free 
time after work or on weekends. The resulting changes to the 
study design will be described in detail in the next section. 
Overview of the study context of the previous studies and the 
present one are provided in Table 1. 

Study Design Changes 
Study Announcement. In our study, it would have not been 
realistic to claim that we are a start-up searching for a reg
ularly employed developer to do a small programming job 
of about one working day for several reasons. First, in the 
frame of a freelance service, it is authentic to hire developers 
for solving a rather small programming task without study 
announcement. By contrast, a start-up would rather search 
with an advertisement for a permanent employee rather than 
contacting employees at a company. Second, we consulted 
ITXcompany and agreed that, even if the programming task 
would be assigned by the management board to several em
ployees, the likelihood that those employees would exchange 
information about the study was rather high. This would have 
consequently invalidated our study results. It would be partic
ularly suspicious if multiple developers working for the same 
organization were asked to do the same job. Therefore, we had 
to declare that our project was a study. To keep the study as 
similar as possible to the model study [28], we used the same 
task as that in Naiakshina et al.’s role-playing scenario (see Ta
ble 1). Participants were also provided with the startup’s web 
presence. The task is described in detail in the supplementary 
materials. 

Study Compensation. In the original study [30], students 
needed about 6-8 hours to finish the project. Thus, Naiakshina 
et al. [28] announced the project as a freelance job that would 
take 8 hours. Based on freelancers’ varied compensation pro
posals, Naiakshina et al. explored the effect of two payment 
levels: Participants were paid either 100 or 200 euros for the 
project (see Table 1). Freelancers took a mean of 3.2 days to 
submit their solutions, though their precise hours of total work 
on the task were not clear. The authors found that the payment 
variable had no significant effect. Participants in the freelancer 
study came primarily from India, China, or Pakistan. In our 
study, we recruited regular software developers from Germany 
and paid them 400 euros. Since the salary of German devel
opers is assumed to be higher, determining appropriate study 
compensation was especially challenging. We again consulted 
ITXcompany about a fair pay. We wanted the compensation 
to be high enough to motivate well-paid company software 
developers to take part in a rather large-scale programming 
study – which differs from the more common type of study 
consisting of a short task and survey – in their free time. Still, 
the compensation also needed to be converged by ordinary 
research funding. We finally opted for one payment level and 
agreed with ITXcompany on a compensation of 400 euros. 
Following the approach of the freelancer study [28], we did 
not require the task to be finished by a deadline. Rather, we 
wanted to know how long regular developers would need to 
complete the project outside their usual working hours. Fol
lowing the previous studies [30, 28], our participants were 

informed that the project was estimated to take 6-8 hours but 
that they could work on the task whenever convenient. 

In the final survey, we asked our participants to rate the com
pensation for the study; 86% (31/36) thought the payment was 
just right, and 8.3% (3/36) felt the payment was too much. One 
participant indicated the payment was too low, and another 
indicated that it was way too low2 (2.8% each). 

Framework Security Support. In the original study with stu
dents, Naiakshina et al. [30] found that participants received 
a higher security score when they used Spring rather than 
JSF. The authors concluded that this was because Spring of
fers a security library import with secure parameter defaults 
and automatic salt generation. Furthermore, students copied 
and pasted solutions from the Internet; these solutions were 
often provided by tutorials using the default library support. 
In contrast, participants who used JSF needed to manually 
implement secure password storage, so they had to determine 
secure parameters on their own. While all participants in the 
freelancer study [28] used JSF, we wondered whether the dif
ferent levels of framework security support would affect the 
company developers’ programming solutions in a similar way 
as that observed in the student group. Thus, like the student 
studies in [30, 29], we asked our participants to use either 
Spring or JSF to solve the task (see IV in Table 1). 

Final Study 
We assumed that the results with students would differ from 
those with professionals in absolute terms (primary level anal
ysis). However, we were interested in whether the relative 
difference between student and professional results would be 
comparable (meta-level analysis). We randomly assigned par
ticipants to one of four conditions: Prompting-JSF (PJ), Non
Prompting-JSF (NJ), Prompting-Spring (PS), Non-Prompting-
Spring (NS). We accepted only functional submissions and 
tested all solutions in our system. To score the security of 
the developers’ code, we adopted the extended version of the 
security scale used by Naiakshina et al. [28]. As displayed in 
Table 1 (see DV1 and DV2), the scoring system contains a bi
nary variable secure indicating whether participants used any 
kind of security in their code and an ordinal variable score3 to 
score how well they did. The score could range from 0 to 7; 
the following factors were considered: whether and what hash 
algorithm was used (0-3 points), the iteration count for key 
stretching (0-1 points), and whether and how the salt was gen
erated (0-3 points). The detailed security scale can be found 
in the supplemental materials. 

Security Request. As shown in Table 1, freelancers who sub
mitted plain text solutions were requested to revise their sub
missions and to store user passwords securely (SecRequest
P[laintext]). The security requirements (prompts in the task 
description and SecRequest-P) used in the previous studies 
did not provide further information on password-storage secu
rity. Acar et al. [4] demonstrated, however, that information 
2This participant, however, indicated to have actively worked 20 
hours on the task, more than any other participant.
 
3Previously called security [29, 28]. In order to avoid confusion
 
between secure and security, the name of this variable security was
 
changed to score.
 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 4



General Information: 
Gender Male: 33 Female: 2 Prefer not to answer: 1 
Age 
University Degree 
Profession 

min: 25, max: 54 
Yes: 29 

Software developer: 30 

mean: 36.64, median: 36 
No: 7 

Other: 6 

SD: 7.7 

Nationality German: 28 German + other: 4 Spanish, French: 1 each, NA: 2 
Professional Experience: 

General Development Experience [years] min: 1, max: 30 mean: 12.92, median: 14 SD: 7.9
 
Java Experience [years] min: 1, max: 21 mean: 9.42, median: 10 SD: 5.28
 

Organization Information: 
Organization Age [years] 
Organization Size 

min: 2, max: 200 
1-9: 1 

500-999: 2 

mean: 49.7, median: 29 
10-249: 11 

1000 or more: 19 

SD: 49.6 
250-499: 3 

Organization with Security Focus Yes: 12 No: 24 

Table 2: Demographics of the 36 participants 

sources can affect developers’ security related programming 
practices. We wondered whether providing more precise task 
requirements, such as suggesting a popular password-storage 
security related information source would help developers 
to follow security best practices. Participants whose solu
tions scored lower than 6,4 received another security request 
(SecRequest-G[uideline]) asking them to follow the recom
mendations of the National Institute of Standards and Technol
ogy (NIST) [17] or the Open Web Application Security Project 
(OWASP) [32]. While NIST’s official documents are rather 
long and difficult to access, OWASP provides an overview 
of state-of-the-art recommended hashing functions and an 
example of an implementation of Argon2 using Java code. 
Therefore, we expected that the NIST documentation would 
be secure but difficult to use and that OWASP documentation 
would be secure and relatively ease to use. 

After participants submitted their final solutions, they were 
invited to take part in an online survey, an extended version 
of the survey used in the previous studies [30, 28]. The sur
vey focused on participants’ experience with the task, their 
knowledge of security and IT, their company background, and 
how well the study task represented their field of work. The 
security requests, the security request procedure, and the final 
survey can be found in the supplementary materials. 

Participants 
We recruited 75 software developers through several channels, 
of whom a total of 36 employed developers completed the 
study. The recruitment of a reasonable number of professional 
software developers for quantitative research studies is chal
lenging [5, 24, 28, 8, 6, 23], especially for a study as long 
as ours. The participants we invited to join our study, are 
only those who had at least one year of programming expe
rience with Java and were regularly working in companies 
or organizations. To establish a comparison between studies 
with full-time working developers and with those who are 
freelancers, and students, we filtered out freelancers, full-time 
4Six of possible 7 points was the highest score actually achieved in 
both the freelance and student group. Neither group became aware of 
the state-of-the-art recommendations, indicating that memory-hard 
hashing functions are necessary for security best practices [12, 19, 
32, 17]. However, solutions which earned 6 points followed industry 
best practices. In accordance with previous studies, we did not want 
participants to be penalized for using the framework’s standards, so 
the Spring BCrypt default parameters were judged to be secure. 

students, and unemployed software developers from our sam
ple. We started recruitment in ITXcompany. Some developers 
of this company also recommended our study to their col
leagues and friends. Of the 45 Java software developers from 
the company, 15 showed interest in participating in our study. 
Three of them were sorted out because of their student status. 
Twelve developers were then invited to the study, and they 
signed the consent form. However, 7 developers dropped out 
because of a lack of time and an additional one also dropped 
out because he did not manage to solve the task in a functional 
way. Finally, only a total of 4 developers of ITXcompany 
completed the study. Among the developers’ colleagues and 
friends, 8 showed interest, 6 of whom were invited to the study; 
the other 2 participants were sorted out because of their stu
dent status. One submission was discarded for non-functional 
reasons, leaving us with 5 valid participants’ sumbissions from 
the referrals. 

We continued our recruitment through XING [35], a German 
career-oriented social networking site similar to the American 
platform LinkedIn [31]; we posted the project in forums for 
Java, Java development, Java user groups, and the job market. 
Forty-nine participants recruited via XING showed interest 
in our study, 11 of whom were sorted out for requirement 
reasons. Thirty-eight participants were therefore invited to 
the study, and 34 signed the consent form. Finally, a total 
of 25 participants recruited via XING completed the study. 
Additionally, we contacted further professional and industry 
contacts, of whom three registered to the study. One was 
sorted out for participant requirement reasons, so two signed 
the consent form and completed the study. The data reported 
herein is those for the remaining 36 participants. 

The participants’ demographic information is shown in Table 2. 
The 36 participants reported ages between 25 and 54 (mean: 
36.64, median: 36, SD: 7.7), and almost all of them were 
male (33 males, 2 females). On average our participants had 
been programming for 12.92 years (min: 1, max: 30, median: 
14, SD: 7.9) and in Java for 9.42 years (min: 1, max: 21, 
median: 10, SD: 5.28).5 Nineteen participants worked in 
companies with 1000 or more employees. Participants’ team 
size were on average 13.1 (median: 8, min: 2, max: 50, SD: 

5No significant demographic differences were found between the 4 
condition groups in terms of general and Java programming experi
ence. 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 5



Factor Description Baseline 

Prompting Whether the participant is asked to store the password securely False 
Sample Student, freelancer or company developer Company developer 
Framework Spring or JSF JSF 
Java experience Years of Java experience n/a 

Table 3: Factors used in our regression models. To select the final models we chose the minimum AIC. 

11.8). Twelve participants reported that their organization has 
a security focus, of whom 6 also explicitly indicated to work 
in a team with a security focus. One additional participant 
worked in a company without, but in a team with a security 
focus. Further information on the participants’ demographic 
information is available in the supplementary materials. 

Evaluation 
Code Analysis 
To ensure data reliability [16, 43], three coders independently 
reviewed all programming code and evaluated them for secu
rity. In three cases, disagreement occurred with respect to the 
parameter specifications of algorithms– the iteration defaults 
of algorithms, whether an algorithm used the classes Ran
dom [33] or SecureRandom [34] for salt generation, and how 
static salts are rated. Disagreement was resolved by consult
ing a security expert and discussing algorithm specifications. 
Because of the rigid rules of the scoring system and the strict 
algorithm specifications, full agreement was achieved. 

Statistical Analysis 
Because of the adjusted study design, we were able to test 4 
of the 7 main hypotheses from [30]. In particular, we tested 
whether prompting (H-P1), framework (H-F1), years of Java 
experience (H-G1), and password storage experience (H-G2) 
had an effect on security.6 A detailed description of the hy
potheses can be found in the supplementary materials. For the 
data analysis, we used the same tests as those utilized in [30, 
28]. All tests referring to the same dependent variable were 
corrected using the Bonferroni-Holm correction. Bonferroni-
Holm corrected tests are labelled with “family = N”, where N 
is referring to the family size. Thus, we report both the initial 
and corrected p-values (cor-p). 

Furthermore, we obtained different iterations of the code sub
missions from our participants because some received security 
requests to improve their code (see Section Final Study). To 
compare the results of this developer study with those of the 
student and freelancer sample, we used the code submission in 
the first iteration before any additional security requests were 
made. We utilized regression models to conduct an overall 
analysis of all studies, including those of Naiakshina et al. [30, 
28] and this replication study. For the binary outcome (secure), 
we used logistic regression, and for the continuous outcome 
(score), we used linear models. To find the best combination 
of factors, we selected the model with the lowest Akaike in
formation criterion (AIC) [13]. All factors for our regression 
6While it was possible to track security attempts of the student sample 
in a lab setting, this information was not accessible in an online study. 
We, therefore, considered the subset secure = 1 (achieving security) 
for our analysis. 

analysis are summarized in Table 3. For all regressions, we 
selected as final the model with the lowest AIC. 

Qualitative Analysis 
We analyzed the qualitative data from the open-ended ques
tions in the survey through inductive coding [45]. Two re
searchers independently searched for codes and categories 
emerging from the raw data. After the coding process was 
completed, the codes were compared and inter-coder agree
ment by using Cohen’s kappa coefficient (κ) [14] was calcu
lated. The agreement was 0.83. A value above 0.75 suggests a 
high level of coding agreement [15]. 

Limitations 
Our study has limitations that need to be considered when 
interpreting the results. The study was conducted online and 
we thus had less control over the study compared to the lab 
study by Naiakshina et al. [29]. We opted for the online study 
to reduce the difficulties in recruiting company developers, 
since it gives the participants the option to work at a time 
of their own choosing. None the less, we found recruiting a 
high number of employed developers for a one-working-day 
study (approximately 8-hours) outside their regular job time 
extremely difficult and thus our sample size is not as large as 
we would have wished. 

Moreover, when comparing the different studies several 
caveats must be taken into account. The students sample 
had a time limit of 8 hours to complete the task in the lab, 
while freelancers and our company developers had no time 
restrictions to complete the task. We did not set deadlines for 
task completion since we hoped to motivate more employed 
developers to take part in the study. However, the developers 
reported to have spent an average of 7 hours actively working 
on the task. Also the study task was framed differently in 
the three studies. The study with university students used a 
university context while the freelancer and our study used a 
company context. Furthermore, our sample consisted of devel
opers working in Germany, which means that similar studies 
in other countries could lead to different results. Because this 
is a replication of a study conducted with freelancers covering 
already a wide range of cultural backgrounds, we did not find 
significant differences in the results between the freelancers 
and our company developers in this context. 

Finally, our study task is only one example case in one pro
gramming language and thus further studies are needed to see 
if our results replicate in other cases as well, e.g., by examin
ing other security tasks, characteristics of developer groups, 
frameworks, and programming languages. 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 6



Non-secure Secure Score Total Non-secure Secure Score Total Non-secure Secure Score Total 
NJ 2 8 

NS 2 7 

PJ 

6

5

1 9 

µ = 1 (σ = 1.85) 
min = 0, max = 4 

µ = 1.71 (σ = 2.93) 
min = 0, max = 6 
µ = 4.8 (σ = 1.75) 10 
min = 0, max = 6 

PS 0 11 µ = 5.86 σ = 0.45) 11 
min = 4.5, max = 6 

NJ 2 

0 

4 µ = 1.92 (σ = 2.25) 
min = 0, max = 5 
µ = 5.4 (σ = 1.34) 
min = 3, max = 6 

6 

NS 5 5 

PJ - - - 
-

PS - - - 
-

NJ 8 8 

NS 1 1 

PJ 

0

0

0 7 

µ = 6.13 (σ = 1.73) 
min = 2, max = 7 

µ = 7 (σ = 0) 
min = 7, max = 7 
µ = 6.5 (σ = 0.87) 7 
min = 5, max = 7 

PS 0 1 µ = 7 (σ = 0) 1 
min = 7, max = 7 

Total 12 24 µ = 3.68 (σ = 2.69) 36 Total 2 9 µ = 3.5 (σ = 2.56) 11 Total 0 17 µ = 6.38 (σ = 1.29) 17 

(a) Initial Solution, n = 36 (b) SecRequest-P, n = 11 (c) SecRequest-G, n = 17 

Table 4: Number of (non-)secure solutions and security score per condition and per security request
 
NJ = Non-prompting JSF; NS = Non-prompting Spring; PJ = Prompting-JSF; PS = Prompting-Spring
 

Ethics 
Our project was approved by the institutional review board of 
our university. At the beginning of our study the participants 
were asked to download the consent form and provide their 
consent, complying with the General Data Protection Regu
lations. Participants were informed about the practices used 
to process and store their data and that they could withdraw 
their data during or after the study without any consequences. 
We ensured all participants that the information about their 
performance would be kept confidential both within their com
pany and outside, and that only anonymized data would be 
published. Additionally, we ensured all our subjects that they 
would be informed about the results of our study. 

One variable of our study included deception by not prompt
ing participants for security. The feedback of our participants 
regarding our study and survey, though, was positive overall. 
None of the non-prompted participants reported to feel de
ceived or expressed any negative feelings. Three of them, how
ever, wished to have been informed about security requests in 
the initial task description. After assessing the security score, 
one prompted participant stated that the security request for 
industry standards should be included in the task requirements 
because it took more time for him to complete the task than ex
pected. Indeed, the estimated time calculation of 6 to 8 hours 
to complete the project was based on the previous studies with 
students and freelancers [30, 28]. Due to our new security 
request SecRequest-G on state-of-the-art security, participants 
might have needed more time to read the information sources 
and apply security measures than we expected. However, simi
lar to students in the lab, company developers reported to have 
actively worked an average 7 hours on the task (min: 2, max: 
20, median: 6, SD: 4.72). 

RESULTS 
Table 4 shows an overview of participants’ submissions. On 
average, initial solutions were submitted after 8 days (min: 
16.5 hours, max: 26 days, median: 8 days, SD: 6.5 days). To 
submit a solution after SecRequest-P, participants needed, on 
average, 1.5 days (min: 3.5 hours, max: 9 days, median: 12 
hours, SD: 2.5 days) and after SecRequest-G, they needed an 
average of 4 days (min: 2 hours, max: 14.5 days, median: 2 
days, SD: 4 days). 

In total, we received 36 submissions of which 12 were non-
secure and 24 were secure (used at least a hashing function). 
Eleven of the 12 non-secure solutions were submitted in plain 

text and thus these participants received SecRequest-P (see 
Table 4b). Only participants from the non-prompted group (NJ 
and NS) received SecRequest-P and yet 2 of the 6 participants 
who used JSF subsequently submitted a non-secure solution. 
Seventeen participants (8 prompted and 9 non-prompted) in 
total did not receive at least 6 points for their initial or revised 
submission after SecRequest-P and thus received SecRequest-
G (see Table 4c). Two of these participants were from the 
Spring group (NS and PS) and 15 were from the JSF group (NJ 
and PJ). In comparison to participants using JSF, participants 
using Spring were more likely to submit solutions with at 
least 6 points. After receiving SecRequest-G, all participants 
delivered a secure solution with an average score of 6.38 points 
(SD: 1.29). 

Within participants’ initial or successive submission after 
SecRequest-P, the highest security score achieved in all the 
groups was 6 (of 7) with no participants using a memory-hard 
hashing function. While participants using Spring tended to 
utilize its opt-in functionality with BCrypt as the preferred 
hashing function for storing user passwords securely and thus 
received 6 points for security (16/18), participants using JSF 
used a variety of methods. Two participants used symmetric 
encryption and received 0 points. Another two participants 
used MD5 without salt and received only 1 of 7 points for 
security. Four participants used SHA-2/3 with salt and re
ceived 4-5 of 7 points. Seven of the 18 JSF users employed 
PBKDF2 as a hashing function, but only one received 6 points 
for her/his parameter choice. Five of these participants used 
128 bits as the output length for the hashing algorithm, which 
was an unusual choice for password storage. These results 
suggested that those participants had copied and pasted code 
from the Internet where PBKDF2 was used for its initial pur
pose, a password-based encryption of a string. The final two 
participants using JSF employed BCrypt as their preferred 
hashing function and received 6 points for security. 

Of the 17 participants who achieved a lower score than 6 
and thus received SecRequest-G, 12 used Argon2 and thus 
received the full 7 points for security. Of these participants, 
7 indicated having used OWASP as an information source, 
suggesting that they adopted the available Java example of an 
Argon2 implementation. Indeed, we found 6 Argon2 submis
sions obviously copied and pasted from the OWASP source, 
which we were able to identify based on the same comments 
present on the website and participants’ code. In addition, 
we observed 2 participants (PJ3 and PJ5) to have stored an 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 7



additional salt in the database. It seems these participants were 
not aware that the Argon2 implementation generated a salt by 
default. Finally, by using BCrypt, two other solutions scored 
6 points for security. Only three participants used PBKDF2 or 
SHA-3 and received at most 5.5 of 7 points for their parameter 
choices. These results indicate that security requests provid
ing a secure-but-usable information source can lead to higher 
software security. A more detailed evaluation of individual 
submissions is available in the supplementary materials. 

Prompting (H-P1) 
We explored the effect of our task description variable (prompt
ing vs. non-prompting) on whether the participants decided to 
store the passwords securely. Table 4a shows that in their ini
tial solutions, the majority of the non-prompted developers (NJ 
and NS) did not store user passwords securely (11 out of 15). 
Only 4 participants stored the passwords securely without be
ing prompted. For the prompting conditions (PJ and PS), only 
one participant stored user passwords insecurely, whereas 20 
participants stored the passwords securely. Thus, the prompt
ing task showed a significant effect (FET: p < 0.001*, cor − p 
< 0.001*, OR = 46.33, CI = [4.74, 2434.13], family = 2). 

Experience (H-G1, H-G2) 
We tested whether Java experience had an effect on the security 
scores of our participants. We found no significant effect of 
Java experience on the initial security scores (Kruskal-Wallis: 
χ2 = 11.9, df = 15, p = 0.69, cor − p = 0.69, family = 2). We 
also found that Java experience had no effect on the scores 
considering only secure solutions (group: secure = 1; Kruskal-
Wallis: χ2 = 10.6, df = 13, p = 0.64). We further investigated 
whether experience with password storage had an effect on 
whether the passwords were stored securely. Of the 26 par
ticipants who indicated to have stored user passwords in a 
database before, 10 initially submitted an insecure solution. 
Of the 10 participants who indicated they had never stored 
passwords before, 8 submitted a secure solution as their initial 
submission. Thus, we found no significant effect of previous 
experience with password storage (FET: p = 0.44, odds ratio 
= 0.41, CI = [0.04, 2.69], family = 2, cor − p = 0.44). 

Framework (H-F1) 
In the initial submissions, we found that the security scores 
achieved in the JSF and Spring groups differed significantly 
(group: secure = 1; Wilcoxon Rank sum: W = 27, p = 0.003*, 
family = 2, cor − p = 0.006*). The mean score for the JSF 
group was 5.09 (group: secure = 1; min: 4, max: 6, median: 
5, SD: 0.7) and 5.89 for the Spring group (group: secure = 
1; min: 4.5, max: 6, median: 6, SD: 0.42), indicating that 
participants from the Spring group achieved higher scores 
than the participants from the JSF group. 

Similar to Naiakshina et al. [30], we calculated the API us
ability scores as suggested by Acar et al. [3] for both groups 
and found that the Spring group achieved higher usability 
scores (mean: 68.06, median: 67.5, SD: 12.44) than the JSF 
group (mean: 58.61, median: 56.25, SD: 18.71). However, 
the difference was not significant (Wilcoxon Rank sum: W 
= 106, p = 0.08). Furthermore, we found no correlation be
tween the usability score and the security score achieved by 
our participants (Pearson, r = -0.11, p = 0.54). 

Company Size and Security Focus 
Similar to Assal et al. [8], we classified our participants’ orga
nization in two size categories: Small and Medium Enterprises 
(SME: less than 500 employees), and Large Enterprises (LE, 
more than 500 employees). Of our participants, 58% (21/36) 
indicated that they work for a LE, whereas 42% (15/36) re
ported to work for a SME. We found that company size had no 
effect on whether or not participants decided to store user pass
words securely (FET: p = 1, odds ratio = 1, CI = [0.19, 4.99]). 
We also tested whether a focus on security by the participants’ 
team or company had effect on security behavior. We found no 
effect for either team security focus (FET: p = 1, odds ratio = 
1.31, CI = [0.17, 16.06] or company security focus (FET: p = 
0.16, odds ratio = 0.34, CI = [0.06, 1.83]. Finally, we analyzed 
the participants’ responses to the question of whether they 
solve security tasks during their working routine. Twenty-one 
participants reported to solve security tasks regularly, while 15 
indicated that they did not solve any security tasks during their 
working routine. We found that having to solve security tasks 
as part of their work routine had no effect on the participants’ 
security behavior (FET: p = 0.72, odds ratio = 0.60, CI = [0.10, 
3.03]). 

Qualitative Analysis 
We evaluated the responses to the open-ended question of 
the survey to get more insight into participants’ rationale be
hind their decisions. The coding overview can be found in 
the supplemental materials. Supporting our previous results, 
we found that besides standards and experience, developers 
mostly rely on requirements when implementing security. In 
particular, participants argued that there is a trade-off between 
requirements and effort (NJ4 - NJ7); if security is not explic
itly requested, there is no personal benefit in dealing with it. 
Participants felt particularly insecure whether the used security 
methods are sufficiently secure for several reasons. First, they 
stressed that security is not part of their everyday development 
work (PJ5, PS8) and that they lack knowledge in this field (PJ7, 
NJ8). Some further suggested that there is a lot of outdated 
information on the Internet with respect to security practices 
(PJ6, PS8), making Internet research rather challenging. Par
ticipants preferred to consult more experienced colleagues 
(PS6, NS1) or other security entities (PJ10, NJ2, NJ7, PS5, 
PS8) to sufficiently fulfill security requirements. 

Additionally, our assumption that OWASP was perceived as 
a more usable information source than NIST was confirmed. 
Of the 17 participants who received SecRequest-G, 7 reported 
to have used OWASP, 3 NIST (PJ4, PJ9, NJ2) and another 3 
used both information sources (PJ10, NJ4, NJ45). The reasons 
provided by participants for their preferred use of OWASP 
were the practical code example of Argon2 (NS4, PJ5, PJ8, 
NJ3, NJ6), the familiarity with the organization (PS7, NJ3, 
NJ7) and the fact that it is open source (PJ3). Furthermore, PJ5 
and PS3 reported to mistrust NIST because of its US origin and 
possibly providing back door access for the National Security 
Agency (NSA). NJ2 and DJP4, however, reported that the 
NIST source was easy to use and provided clear requirements. 
By contrast, PJ5 found both sources to be inconsistent with 
the requirements, too complicated, and difficult to follow. 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 8



Students n = 40 Freelancers n = 42 Company Developers n = 36 

Non-secure Secure Non-secure Secure Non-secure Secure 
Non-Prompting 20 0 17 4 11 4 

Prompting 8 12 8 13 1 20 

Table 5: Number of secure solutions per condition 

Factor O.R. C.I. p-value 

Prompting 29.89 [9.08, 98.44] <0.001* 
Students 0.08 [0.01, 0.48] 0.006* 
Freelancers 0.23 [0.05, 1.05] 0.06 
Spring 1.75 [0.5, 6.19] 0.38 
Java Experience 0.96 [0.83, 1.11] 0.58 

Table 6
 
Logistic regression whether the initial solution is secure. Odds ratios (O.R.)
 

estimate relative likelihood of succeeding. Baseline factors: company
 
developer sample, JSF, and non-prompting. Nagelkerke R2= 0.55.
 

Factor Estimates C.I. p-value 

Prompting 
Students 
Freelancers 
Spring 
Java Experience 

2.92 
-1.98 
-1.54 
0.94 
-0.03 

[2.15, 3.69] 
[-3.2, -0.75] 
[-2.66, -0.43] 
[-0.01, 1.9] 
[-0.13, 0.08] 

<0.001* 
0.002* 
0.008* 
0.06 
0.65 

Table 7
 
Linear regression on the score of developers’ results using the factors
 

prompting, sample, framework, and experience. Baseline factors: company
 
developer sample, JSF, and non-prompting. R2= 0.44.
 

Primary Level Analysis Across Samples 
For our primary analysis, we compared the password-storage 
results of students [30], freelancers [28] and company de
velopers. For this comparison we only considered the initial 
submissions of participants. We were able to compare the secu
rity results based on two variables: prompting and framework. 
By contrast, the API usability was measured in all groups on 
different stages of the study (students: after initial submission; 
freelancers: e.g., after SecRequest-P; company developers: 
e.g., after SecRequest-G). Therefore, no comparison of the 
API usability across samples was conducted. 

Table 5 summarizes how many participants from the prompted 
and non-prompted conditions submitted a secure solution. 
Similar to freelancers and students, most company develop
ers who were not prompted did not submit a secure solution 
for password storage, while the majority of those who were 
prompted did. However, unlike the students and freelancers, 
more company developers in total were able to solve the task 
securely. Table 6 shows the results of the logistic regres
sion on whether participants submitted secure solutions. The 
model includes the following factors: prompting, the freelance 
or student status, Spring, and Java experience. Prompting 
and students were significant factors in the regression model, 
demonstrating an effect on whether a participant implemented 
security. Prompting was associated with approximately 30× 

higher odds that the participants’ solution would include se
cure storage of user passwords. In comparing samples, student 
participants were only 0.08× as likely to store user passwords 
securely as company developers. Java experience, framework 
and freelance status did not show a significant effect in our 
model. 

With regard to the security scale, a variety of security scores 
were observed. Figure 1 shows the security scores of initial 
submissions across different frameworks and samples. In the 
JSF conditions, company developers achieved higher scores 
than freelancers and students. In the Spring conditions, the 
developers’ and students’ scores were almost the same. Free
lancers were not tested for the Spring conditions, although 
they showed a greater variety of scores for JSF compared to 
company developers and students. Table 7 shows the results 
of the regression model (F(5,107) = 16.83) for the security 
scores and includes the factors of freelance or student sta
tus, prompting, Spring, and Java experience. Prompting and 
sample were significant while Java experience and framework 
had no significant effect on the score. Participants that were 
prompted for secure password storage achieved a higher score 
(on average 2.92 more points) than participants who were not 
prompted. On average, students received 1.98 and freelancers 
1.54 less points than company developers. 

Meta-level Analysis Across Samples 
Table 8 summarizes our findings of the meta-level analy
sis. The conditions of being prompted in regards to security 
showed an effect on CS students, freelancers, and company 
developers. Java or password storage experience had no effect 
on security in the student, freelancer, and company developer 
group. However, a treatment effect of framework was found to 
be significant in the developer as well as in the student sample 
(because they only used JSF, freelancers were not consid
ered for the treatment framework). As Figure 1 demonstrates, 
students in the Spring group achieved higher security scores 
than students using JSF. Similarly, company developers in the 
Spring group achieved higher security scores than company 
developers in the JSF conditions. Moreover, 2 of the company 
developer submissions had to be discarded for non-functional 
reasons. Although all other company developers were able to 
submit functional solutions, some reported to struggle with 
functionality issues similar to the students. 

DISCUSSION 
Ecological validity issues are a major concern of usable se
curity studies with developers [5]. While there is evidence 
that students behave similar to professionals in software engi
neering studies [20, 11, 25, 44, 38], limited knowledge exist 
whether this holds true for security developer studies. Our 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 9



IV DV St.Test Students [30] Freelancers [28] Company Developers 

Prompting Secure FET p < 0.001* p = 0.01*	 p < 0.001* 
O.R. = ∞, C.I = [5.06, ∞] O.R. = 6.55, C.I. = [1.44, 37.04] O.R. = 46.33, C.I. = [4.74, 2434.13] 

Java Experience Score Kruskal-Wallis p = 0.249 p = 0.21 p = 0.69 

Stored Passwords Before Secure FET p = 0.297 p = 0.52 p = 0.44 
O.R. = 2.54, C.I = [0.49, 17.72] O.R. = 0, C.I. = [0,8.91] O.R. = 0.41, C.I. = [0.04, 2.69] 

Framework	 Score Wilcoxon Rank sum p = 0.03* - p = 0.003* 
group: secure = 1 - group: secure = 1 

Table 8: Summary of all tests across different samples
 
The IV framework was not examined for freelancers. In the student sample, the originally examined group was attempted security = 1 (for IV prompting and
 

framework).
 

JSF Spring

S
tu

de
nt

s

F
re

el
an

ce
rs

C
om

pa
ny

 D
ev

S
tu

de
nt

s

C
om

pa
ny

 D
ev

1

2

3

4

5

6

Sample

S
co

re

n
3
6
9
12

Figure 1: Scores across samples (secure = 1)
 
Company dev = company developer. The size of the points symbolizes how
 
many participants from a sample gained the corresponding scores considering
 

initial and secure solutions only. In the freelancer sample only the JSF
 
framework was tested.
 

regression analysis on password-storage security showed that 
company developer and student results differed in absolute 
terms. This means that company developers produced more 
secure solutions than students. Since years of Java experience 
was not a significant predictor for a higher security score, other 
factors need to be taken into account for an exploration of the 
question: Why did company developers perform better than 
students? Our results suggest that the company context of de
velopers could be the key. In our survey, 17 of 36 participants 
reported company project experience, company training, and 
exchange with colleagues to be their main IT security source 
of knowledge. Only 8 referred to university, which is probably 
the main source of knowledge for most students. Additionally, 
13 company developers indicated to work in a company/team 
with security focus and 21 to be involved in security relevant 
projects. However, more research will be needed to answer 
this question in more depth. 

As suggested by Sjoberg et al. [42], we considered the com
parison of students’ and professionals’ behavior not only in 
absolute terms, but also in relative terms. In terms of relativity, 
we observed the treatment effects hold for all groups: prompt
ing for students, freelancers and company developers, and the 
effect of framework for students and company developers. We 
believe that relative behavior is more relevant to the usable 

security and privacy community. Absolute values (such as the 
security score for password storage) are very dependent on 
the study sample and since it is extremely difficult to recruit 
a representative sample of developers, absolute values do not 
carry much weight beyond the study sample. However, rela
tive values, such as “security scores for library A were better 
than scores for library B,” look more robust and thus are more 
likely to be useful for researchers who want to test if e.g., a 
new system they designed improves the state of the art. 

Our findings offer an indication for the ecological validity of 
security developer studies with CS students examining rela
tive behavior. Since the recruitment of students for academic 
studies is considered as rather convenient by researchers, these 
are promising results for future studies. However, it should be 
taken into consideration that we examined a security example 
case in one programming language and thus further studies 
are needed to see if our results replicate in other cases as well. 

CONCLUSION 
The main goal of this work was to compare findings of studies 
conducted with students and freelancers recruited out of con
venience to findings of studies conducted with professionally 
employed developers. Therefore, we replicated the password-
storage study of Naiakshina et al. [30, 28] with 36 software 
developers employed by diverse companies. Our analysis 
showed that the behavior of company developers and students 
differed in absolute terms with regard to security measures. 
However, we found that the effect of the presented treatment of 
security prompting hold for all samples (students, freelancers, 
and company developers). Furthermore, the treatment effect of 
achieving more secure solutions by using an API with a higher 
level of password storage support existed for both, students 
and company developers. Since the results of students and 
company developers were similar in relative terms, we argue 
that security developer studies conducted with CS students 
can offer valuable insights if the effects of different treatments 
are explored. However, our study is based on an example 
case in one programming language and therefore, future work 
should examine other security tasks, developer characteristics, 
frameworks, and programming languages. 

ACKNOWLEDGMENTS 
The authors would like to thank Johanna Deuter for her help 
during the paper writing. This work was partially funded by 
the ERC Grant 678341: Frontiers of Usable Security. 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 10



REFERENCES 
[1]	 [n.d.]. JavaServer Faces (JSF). ([n.d.]). Retrieved August 

31, 2019 from 
https://javaee.github.io/javaserverfaces-spec/ 

[2] [n.d.]. Spring. ([n.d.]). Retrieved August 31, 2019 from 
https://spring.io/projects/spring-framework 

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Simson 
Garfinkel, Doowon Kim, Michelle L Mazurek, and 
Christian Stransky. 2017. Comparing the Usability of 
Cryptographic APIs. In Security and Privacy (SP), 2017 
IEEE Symposium on. IEEE, IEEE, San Jose, CA, USA, 
154–171. 

[4] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon 
Kim, Michelle L Mazurek, and Christian Stransky. 
2016a. You Get Where You’re Looking for: The Impact 
of Information Sources on Code Security. In 2016 IEEE 
Symposium on Security and Privacy (SP). IEEE Press, 
Piscataway, NJ, USA, 289–305. DOI: 
http://dx.doi.org/10.1109/SP.2016.25 

[5] Yasemin Acar, Sascha Fahl, and Michelle L Mazurek. 
2016b. You are Not Your Developer, Either: A Research 
Agenda for Usable Security and Privacy Research 
Beyond End Users. In Cybersecurity Development 
(SecDev), IEEE. IEEE, IEEE Press, Piscataway, NJ, 
USA, 3–8. 

[6] Yasemin Acar, Christian Stransky, Dominik Wermke, 
Michelle L. Mazurek, and Sascha Fahl. 2017. Security 
Developer Studies with GitHub Users: Exploring a 
Convenience Sample. In Thirteenth Symposium on 
Usable Privacy and Security (SOUPS 2017). USENIX 
Association, Santa Clara, CA, 81–95. 
https://www.usenix.org/conference/soups2017/ 
technical-sessions/presentation/acar 

[7]	 Anne Adams and Martina Angela Sasse. 1999. Users are 
not the enemy. Commun. ACM 42, 12 (1999), 40–46. 

[8] Hala Assal and Sonia Chiasson. 2019. ’Think Secure 
from the Beginning’: A Survey with Software 
Developers. In Proceedings of the 2019 CHI Conference 
on Human Factors in Computing Systems (CHI ’19). 
ACM, New York, NY, USA, Article 289, 13 pages. DOI: 
http://dx.doi.org/10.1145/3290605.3300519 

[9] Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason I 
Hong, and Lorrie Faith Cranor. 2014. The Privacy and 
Security Behaviors of Smartphone App Developers. 
(2014). 

[10] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth 
Holmes, Jing Feng, Emerson Murphy-Hill, and Chris 
Parnin. 2017. Do Developers Read Compiler Error 
Messages?. In Proceedings of the 39th International 
Conference on Software Engineering (ICSE ’17). IEEE 
Press, Piscataway, NJ, USA, 575–585. DOI: 
http://dx.doi.org/10.1109/ICSE.2017.59 

[11] Patrik Berander. 2004. Using Students as Subjects in 
Requirements Prioritization. In Empirical Software
Engineering, 2004. ISESE’04. Proceedings. 2004 
International Symposium on. IEEE, IEEE, Redondo 
Beach, CA, USA, 167–176. 

[12] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 
2015. Argon2: the memory-hard function for password 
hashing and other applications. Technical Report. Tech. 
rep., Password Hashing Competition (PHC). 

[13] Kenneth P Burnham and David R Anderson. 2004. 
Multimodel inference: understanding AIC and BIC in 
model selection. Sociological methods & research 33, 2 
(2004), 261–304. 

[14] Jacob Cohen. 1960. A coefficient of agreement for 
nominal scales. Educational and psychological 
measurement 20, 1 (1960), 37–46. 

[15] Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. 
2013. Statistical methods for rates and proportions. 
John Wiley & Sons. 

[16] Nahid Golafshani. 2003. Understanding reliability and 
validity in qualitative research. The qualitative report 8, 
4 (2003), 597–606. 

[17] Paul A Grassi, James L Fenton, EM Newton, RA 
Perlner, AR Regenscheid, WE Burr, JP Richer, NB 
Lefkovitz, JM Danker, Yee-Yin Choong, and others. 
2017. NIST Special Publication 800-63b: Digital 
Identity Guidelines. Enrollment and Identity Proofing 
Requirements. 
url:https://pages.nist.gov/800-63-3/sp800-63b.html 
(2017). 

[18] Matthew Green and Matthew Smith. 2016. Developers 
are Not the Enemy!: The Need for Usable Security APIs. 
IEEE Security & Privacy 14, 5 (2016), 40–46. 

[19] George Hatzivasilis, Ioannis Papaefstathiou, and 
Charalampos Manifavas. 2015. Password Hashing 
Competition-Survey and Benchmark. IACR Cryptology 
ePrint Archive 2015 (2015), 265. 

[20] Martin Höst, Björn Regnell, and Claes Wohlin. 2000. 
Using Students as Subjects- A Comparative Study of 
Students and Professionals in Lead-Time Impact 
Assessment. Empirical Software Engineering 5, 3 
(2000), 201–214. 

[21] Shubham Jain and Janne Lindqvist. 2014. Should I 
protect you? Understanding developers’ behavior to 
privacy-preserving APIs. In Workshop on Usable 
Security, Vol. 2014. 

[22] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, 
and Robert Bowdidge. 2013. Why Don’t Software 
Developers Use Static Analysis Tools to Find Bugs?. In 
Proceedings of the 2013 International Conference on 
Software Engineering (ICSE ’13). IEEE Press, 
Piscataway, NJ, USA, 672–681. 
http://dl.acm.org/citation.cfm?id=2486788.2486877 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 11

https://javaee.github.io/javaserverfaces-spec/
https://spring.io/projects/spring-framework
http://dx.doi.org/10.1109/SP.2016.25
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
http://dx.doi.org/10.1145/3290605.3300519
http://dx.doi.org/10.1109/ICSE.2017.59
http://dl.acm.org/citation.cfm?id=2486788.2486877


[23] Katharina Krombholz, Wilfried Mayer, Martin 
Schmiedecker, and Edgar Weippl. 2017. "I Have No 
Idea What I’m Doing" - On the Usability of Deploying 
HTTPS. In 26th USENIX Security Symposium (USENIX 
Security 17). USENIX Association, Vancouver, BC, 
1339–1356. 
https://www.usenix.org/conference/usenixsecurity17/ 
technical-sessions/presentation/krombholz 

[24] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 
2006a. Maintaining Mental Models: A Study of 
Developer Work Habits. In Proceedings of the 28th 
International Conference on Software Engineering 
(ICSE ’06). ACM, New York, NY, USA, 492–501. DOI: 
http://dx.doi.org/10.1145/1134285.1134355 

[25] Thomas D LaToza, Gina Venolia, and Robert DeLine. 
2006b. Maintaining mental models: a study of developer 
work habits. In Proceedings of the 28th international 
conference on Software engineering. ACM, 492–501. 

[26]	 L. Layman, L. Williams, and R. S. Amant. 2007. Toward 
Reducing Fault Fix Time: Understanding Developer 
Behavior for the Design of Automated Fault Detection 
Tools. In First International Symposium on Empirical 
Software Engineering and Measurement (ESEM 2007). 
176–185. DOI:http://dx.doi.org/10.1109/ESEM.2007.11 

[27] Brad A Myers and Jeffrey Stylos. 2016. Improving API 
Usability. Commun. ACM 59, 6 (2016), 62–69. 

[28] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, 
Emanuel von Zezschwitz, and Matthew Smith. 2019. "If 
You Want, I Can Store the Encrypted Password": A 
Password-Storage Field Study with Freelance 
Developers. In Proceedings of the 2019 CHI Conference 
on Human Factors in Computing Systems (CHI ’19). 
ACM, New York, NY, USA, Article 140, 12 pages. DOI: 
http://dx.doi.org/10.1145/3290605.3300370 

[29] Alena Naiakshina, Anastasia Danilova, Christian 
Tiefenau, Marco Herzog, Sergej Dechand, and Matthew 
Smith. 2017. Why Do Developers Get Password Storage 
Wrong?: A Qualitative Usability Study. In Proceedings 
of the 2017 ACM SIGSAC Conference on Computer and 
Communications Security (CCS ’17). ACM, New York, 
NY, USA, 311–328. DOI: 
http://dx.doi.org/10.1145/3133956.3134082 

[30] Alena Naiakshina, Anastasia Danilova, Christian 
Tiefenau, and Matthew Smith. 2018. Deception Task 
Design in Developer Password Studies: Exploring a 
Student Sample. In Fourteenth Symposium on Usable 
Privacy and Security (SOUPS 2018). USENIX 
Association, Baltimore, MD, USA, 297–313. 
https://www.usenix.org/conference/soups2018/ 
presentation/naiakshina 

[31] [n.d.]. [n.d.]a. LinkedIn. ([n.d.]). 
https://www.linkedin.com Accessed: September 2019. 

[32] [n.d.]. [n.d.]b. Open Web Application Security Project 
(OWASP). ([n.d.]). 
https://github.com/OWASP/CheatSheetSeries/blob/ 

master/cheatsheets/Password_Storage_Cheat_Sheet.md 
Accessed: September 2019. 

[33]	 [n.d.]. [n.d.]c. Random (Java SE 11 & JDK 11 ) - Oracle 
Docs. ([n.d.]). Retrieved September 05, 2019 from 
https://docs.oracle.com/en/java/javase/11/docs/api/ 
java.base/java/util/Random.html 

[34] [n.d.]. [n.d.]d. SecureRandom (Java SE 11 & JDK 11 ) 
Oracle Docs. ([n.d.]). Retrieved September 05, 2019 
from https://docs.oracle.com/en/java/javase/11/docs/ 
api/java.base/java/security/SecureRandom.html 

[35] [n.d.]. [n.d.]e. XING. ([n.d.]). Retrieved August 31, 
2019 from https://www.xing.com/ 

[36] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, 
Michael Backes, Charles Weir, and Sascha Fahl. 2017. 
A Stitch in Time: Supporting Android Developers in 
WritingSecure Code. In Proceedings of the 2017 ACM 
SIGSAC Conference on Computer and Communications 
Security (CCS ’17). ACM, New York, NY, USA, 
1065–1077. DOI: 
http://dx.doi.org/10.1145/3133956.3133977 

[37] Lutz Prechelt. 2011. Plat_Forms: A Web Development 
Platform Comparison by an Exploratory Experiment 
Searching for Emergent Platform Properties. IEEE 
Transactions on Software Engineering 37, 1 (Jan 2011), 
95–108. DOI:http://dx.doi.org/10.1109/TSE.2010.22 

[38] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 
2015. Are students representatives of professionals in 
software engineering experiments?. In Proceedings of 
the 37th International Conference on Software 
Engineering-Volume 1. IEEE Press, IEEE, Florence, 
Italy, 666–676. 

[39]	 M Angela Sasse. 2003. Computer security: Anatomy of 
a usability disaster, and a plan for recovery. (2003). 

[40]	 Martina Angela Sasse, Sacha Brostoff, and Dirk Weirich. 
2001. Transforming the ‘weakest link’ - a 
human/computer interaction approach to usable and 
effective security. BT technology journal 19, 3 (2001), 
122–131. 

[41] R. Scandariato, J. Walden, and W. Joosen. 2013. Static 
analysis versus penetration testing: A controlled 
experiment. In 2013 IEEE 24th International 
Symposium on Software Reliability Engineering (ISSRE). 
IEEE Press, Piscataway, NJ, USA, 451–460. DOI: 
http://dx.doi.org/10.1109/ISSRE.2013.6698898 

[42]	 Dag IK Sjoberg, Bente Anda, Erik Arisholm, Tore Dyba, 
Magne Jorgensen, Amela Karahasanovic, 
Espen Frimann Koren, and Marek Vokác. 2002. 
Conducting realistic experiments in software 
engineering. In Proceedings international symposium on 
empirical software engineering. IEEE, IEEE Press, 
Piscataway, NJ, USA, 17–26. 

[43]	 Malcolm Smith. 2017. Research methods in accounting. 
Sage. 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 12

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
http://dx.doi.org/10.1145/1134285.1134355
http://dx.doi.org/10.1109/ESEM.2007.11
http://dx.doi.org/10.1145/3290605.3300370
http://dx.doi.org/10.1145/3133956.3134082
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.linkedin.com
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Random.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Random.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/SecureRandom.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/SecureRandom.html
https://www.xing.com/
http://dx.doi.org/10.1145/3133956.3133977
http://dx.doi.org/10.1109/TSE.2010.22
http://dx.doi.org/10.1109/ISSRE.2013.6698898


[44] Mikael Svahnberg, Aybüke Aurum, and Claes Wohlin. 
2008. Using Students As Subjects - an Empirical 
Evaluation. In Proceedings of the Second ACM-IEEE 
International Symposium on Empirical Software 
Engineering and Measurement (ESEM ’08). ACM, New 
York, NY, USA, 288–290. DOI: 
http://dx.doi.org/10.1145/1414004.1414055 

[45] David R Thomas. 2006. A general inductive approach 
for analyzing qualitative evaluation data. American 
journal of evaluation 27, 2 (2006), 237–246. 

[46] T. Thomas, B. Chu, H. Lipford, J. Smith, and E. 
Murphy-Hill. 2015. A study of interactive code 
annotation for access control vulnerabilities. In 2015 
IEEE Symposium on Visual Languages and 
Human-Centric Computing (VL/HCC). IEEE Press, 
Piscataway, NJ, USA, 73–77. DOI: 
http://dx.doi.org/10.1109/VLHCC.2015.7357200 

[47] Tyler W. Thomas, Heather Lipford, Bill Chu, Justin 
Smith, and Emerson Murphy-Hill. 2016. What 
Questions Remain? An Examination of How Developers 
Understand an Interactive Static Analysis Tool. In 
Twelfth Symposium on Usable Privacy and Security 
(SOUPS 2016). USENIX Association, Denver, CO. 
https://www.usenix.org/conference/soups2016/ 
workshop-program/wsiw16/presentation/thomas 

[48] Alma Whitten and J Doug Tygar. 1999. Why Johnny 
Can’t Encrypt: A Usability Evaluation of PGP 5.0.. In 
Usenix Security, Vol. 1999. 

[49] Chamila Wijayarathna and Nalin A. G. Arachchilage. 
2018. Why Johnny Can’t Store Passwords Securely?: A 
Usability Evaluation of Bouncycastle Password Hashing. 
In Proceedings of the 22Nd International Conference on 
Evaluation and Assessment in Software Engineering 
2018 (EASE’18). ACM, New York, NY, USA, 205–210. 
DOI:http://dx.doi.org/10.1145/3210459.3210483 

[50] J. Xie, H. R. Lipford, and B. Chu. 2011. Why do 
programmers make security errors?. In 2011 IEEE 
Symposium on Visual Languages and Human-Centric 
Computing (VL/HCC). IEEE Press, Piscataway, NJ, 
USA, 161–164. DOI: 
http://dx.doi.org/10.1109/VLHCC.2011.6070393 

[51] Khaled Yakdan, Sergej Dechand, Elmar 
Gerhards-Padilla, and Matthew Smith. 2016. Helping 
Johnny to Analyze Malware: A Usability-Optimized 
Decompiler and Malware Analysis User Study. In 
Security and Privacy (SP), 2016 IEEE Symposium on. 
IEEE, IEEE, San Jose, CA, USA, 158–177. 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 662 Page 13

http://dx.doi.org/10.1145/1414004.1414055
http://dx.doi.org/10.1109/VLHCC.2015.7357200
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
http://dx.doi.org/10.1145/3210459.3210483
http://dx.doi.org/10.1109/VLHCC.2011.6070393

	Introduction
	Related Work
	Security Studies with Students
	Security Studies with Developers
	Student and Developer Comparison in Security Studies

	Methodology
	Study Design Changes
	Final Study
	Participants
	Evaluation
	Code Analysis
	Statistical Analysis
	Qualitative Analysis

	Limitations
	Ethics

	Results
	Prompting (H-P1)
	Experience (H-G1, H-G2)
	Framework (H-F1)
	Company Size and Security Focus
	Qualitative Analysis

	Primary Level Analysis Across Samples
	Meta-level Analysis Across Samples

	Discussion
	Conclusion
	Acknowledgments
	References 



