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a b s t r a c t

Outsourcing of biomedical data, especially human patient data, for processing is heavily constrained by
legal issues. For instance searching for a biological sequence of amino acids or DNA nucleotides in a li-
brary or database of sequences of interest to identify similarities is not something which can easily be
outsourced due to the data protection and privacy laws. However, DNA sequencing is becoming a main
stream technology, thus it would be desirable to be able to offer computational services without endan-
gering the patient privacy. While data in transit can easily be protected by transport layer security, the
data must be stored in the clear during processing. Most algorithms and schemes are either optimized for
speed with no consideration for data protection and thus cannot be used to offer services. On the other
hand the theoretical Private Information Retrieval (PIR) schemes that protect the privacy of patient data
are so slow that they are not feasible for the real world use. Since the search spaces represented for in-
stance by the genome or proteome of complex organisms are immense, fast privacy preserving search
algorithms are needed. In the previous work we introduced the foundation for such a privacy preserving
genome search engine. In this work, we improve and elaborate on this and present an extensive evalu-
ation and comparison showing that this scheme is both secure and practical. Our approach is based on
Bloom filters with a configurable security property that performs more than 2000 times faster than PIR
equivalents for large datasets,making it suitable for applications in bioinformatics. The results can then be
further aggregated using Homomorphic Cryptography to allow an exact-match searching. In performance
tests a search of a 50-nucleotides-long sequence against human chromosomes can be securely executed
in less than 0.1 s on a 2.8 GHz Intel Core i7. We offer the entire system as an open source service for the
community and offer ready-to-use REST as well as SOAP Web services.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Trust remains a crucial challenge concerning the outsourcing of
computational tasks to the Cloud in the biomedical domain. Data
can be transferred via encrypted channels, but as soon as process-
ing begins, the data is disclosed to the Cloud provider that subse-
quently has reading access to the data and applies the processing
algorithm to it in the clear (c.f. Fig. 1). This is a significant hindrance
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for many data intensive applications that could make good use of
Cloud computing but have privacy and data protection require-
ments that forbid the disclosure of sensitive data to a third party.
The search for DNA or a protein sequence in a database is an ex-
ample of a biomedical application that uses patient related data
thatmay allow re-identification of the subject. Gymrek et al. [1] de-
scribe how the re-identification of subjects is possible using their
publicly available DNA data that had been thought of as anonymi-
zed.

Homomorphic Cryptography (hCrypt, c.f. [2] for Gentry’s break-
through work) is a theoretically promising technology that pro-
vides a solution to this problem by allowing a remote party to
execute arbitrary algorithms on encrypted data. This would al-
low the outsourcing of privacy constrained computational tasks to
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(a) Encryption of transfer channels only.

(b) This article: obfuscation of the search query.

Fig. 1. Achieving privacy of patients’ data.
Cloud resources without the need to establish trust, as the Cloud
provider could not read the encrypted data. However, the perfor-
mance of plain hCrypt for large data sets makes it unfeasible for
most real world problems if used as a stand-alone solution, since
recrypts are necessary after every AND gate and recrypts are a very
expensive operation. Even in a recent scheme by Coron et al. [3], a
recrypt operation takes 51 s for λ = 62 bits of security. Thus, the
overhead from hCrypt housekeeping quickly dominates the real
work.

The family of Private Information Retrieval (PIR) schemes es-
tablishes a cryptographic protocol that allows a user to search the
database without revealing which item was queried. While some
progress has been made in terms of runtime and communication
complexity by Boneh et al. [4], Gentry andRamzan [5], andKushile-
vitz and Ostrovsky [6], searching the database is still at best bound
linearly to the size of the database. For applications in biology and
bioinformatics with large datasets, PIR schemes are still not feasi-
ble, as shown by our performance comparison.

1.1. Our contributions

Since hCrypt and PIR both solve the problem of private search
in theory only, we have developed a Bloom filter based approach to
privacy preserving search on databases [7] that allows for the fea-
sible outsourcing of searching a sequence in a database by intro-
ducing a privacy/performance trade-off: instead of a hard security
guarantee, the search result is hidden in noise. The ratio between
real search and the noise can be configured so that it conforms
to data protection regulations. The huge benefit of this somewhat
weaker security guarantee is a performance increase of a factor of
2650 for the time it takes to execute a query compared to the recent
PIR schemes (see Section 10.1). In detail, the runtime complexity
of our scheme is in O(log |A| + |s| + |R|) for a database A with the
search term s and the results set R. This qualifies the algorithm to
search large data sets.

The search algorithm operates on an Obfuscated Bloom filter
(OBF) of the search term. In this paper, we prove that it is crypto-
graphically hard to deduce the search term from the OBF or the re-
sults set. Furthermore, the additive property of Bloom filters is used
to combine a set of queries into one that matches any search term
of the set. This makes searching in a stream as efficient as search-
ing in a set of discrete strings. We present a real world application
of this principle from the biomedical domain and show that pro-
tected and secured search of encrypted DNA sequence queries in
the complete human chromosomes is feasible. The output of this
Bloom filter based search algorithm is then large enough to con-
form to the data protection regulations, as well as small enough to
allow further processing using hCrypt.

In this article, we also present an analysis of how the Bloom fil-
ter search performs against Private Information Retrieval schemes
on real-world datasets. In performance tests a search of a 50 nu-
cleotides long sequence against human chromosomes can be se-
curely executed in less than 0.1 s on a 2.8 GHz Intel Core i7. Finally,
we show how the Bloom filter search can be integrated into the ex-
isting e-Science ecosystems as a Web service. We implement the
Bloom filter search as a ready-to-use REST as well as a SOAP Web
service.

1.2. Outline

In Section 2, we consider alternativemethods to solve the prob-
lem of privacy preserving search possibilities and evaluate those
against the Bloom filter search. In Section 3, a common notation
for homomorphic encryption schemes and Bloom filters is estab-
lished. Obfuscated Bloom filters are introduced in Section 4 as a
crucial component to the search. In Section 5,we discuss the Bloom
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filter search in detail and show a security analysis in Section 6. An
implementation of the algorithms along with Web service inter-
faces is introduced in Section 8; a real world use case is analyzed
in Section 9.We concludewith a performance evaluation and com-
parison with two PIR schemes in Section 10.

2. Related work

2.1. Private Information Retrieval (PIR)

In 2007, Boneh et al. [4] published a protocol that supports
queries on encrypted data using a somewhat homomorphic crypto
system by Boneh, Goh, and Nissim [8]. This crypto system al-
lows for an arbitrary amount of additions, but only one multipli-
cation. The system they present has a communication complexity
of O(
√
A log3 A) with A being the size of the database, whereas our

approach only has a communication complexity of O(|s|) with s
as the search term, as shown in Eq. (5). Therefore, the commu-
nication complexity of our scheme does not depend on the size
of the database at all. Boneh et al. achieve a runtime complexity
of O(|A| · |s| · poly λ) in combination with the PIR protocol by
Cachin et al. [9]. In comparison, the total runtime complexity of our
scheme is in O(log |A| + |s| + |R|) for |R| being the size of interme-
diate results produced by the Bloom filter search. Comparing secu-
rity properties, Boneh’s scheme completely hides the query from
the server, whereas our scheme hides the query in |R| =


λ+k
λ


queries (where k is the number of hash functions used in the Bloom
filters and λ the obfuscation parameter). When setting |R| ≈ |A|,
we achieve the same security and runtime complexity as [4]. The
parameter λ can be used to control the level of obfuscation and en-
ables a security/performance trade off. This allows for the practical
use of the system for a given amount of obfuscation (c.f. Sections 4
and 9).

Camenisch et al. [10] show how to integrate access permissions
and policies into an oblivious transfer protocol by introducing a
third party. This paper focuses on confidential access to public
databases without access policies.

Canetti et al. [11] determine ways to provide verifiable results
of delegated computation and information retrieval. Apart from
the performance problem, this is another great challenge for future
delegation scenarios but out of the scope of this paper.

2.2. Garbled circuits

The first secure approach to solve the problem of secret func-
tion evaluation was introduced in 1986 by Yao [12]. He presented
the concept of Garbled Circuits, in which algorithms are translated
to single-pass boolean circuits. The state tables of the gates in the
circuit are then encrypted and shuffled within the state table, dis-
guising the boolean function of a gate and essentially the function
of the whole circuit.

Although this method is usable to some extent in an implemen-
tation by Malkhi et al. [13] and Malka [14], the core concept has
some inherent deficits:

• the encryption and shuffling of the state tables introduce a de-
pendency between the gates. This means that the circuit is only
able to pass in one large pre-defined run. Modularity is not pos-
sible;
• furthermore, the security of the scheme relies on the fact that

each gate only runs once. Therefore, only linear circuits are pos-
sible. Loops, for example, have to be unrolled completely;
• lastly, the input from the circuit creator is encoded right into

the garbled circuit. In consequence, no memory access is possi-
ble, because the value of a memory cell cannot act as an input
for the next cycle.
These restrictions lead to the fact that only limited algorithms
can be transformed into a garbled circuit. Since the circuits can
only be passed once, it is impossible to search twice with the same
database and circuit.

2.3. Trusted Computing

In Trusted Computing [15], the integrity of the system is ensured
through specialized hardware, the Trusted PlatformModule (TPM).
The TPM canmeasure the integrity of the bootloader, the operating
systemand software running in the operating systemandhelp pre-
vent tampered components from starting. The data and programs
processed by the platform cannot be protected against the owner
of theplatform, as they are in possession of the root key for theplat-
form. Therefore, Trusted Computing cannot be used to outsource
searches if the database server is not trusted.

2.4. Encrypted CPU/hCrypt

Gentry [16,2] introduced a fully homomorphic crypto system.
In this work he also stated that it is possible to evaluate circuits
with arbitrary depth by mapping the mathematical operations to
boolean operations, thus offering significant ground work for the
encrypted execution of arbitrary programs. Based on this and the
cryptosystemby Smart andVercauteren [17] andBrenner et al. [18]
developed an encrypted CPU capable of executing arbitrary pro-
grams by addressing issues such as memory access, branching and
self-modifying code. With this CPU it is possible to execute arbi-
trary encrypted code as well as access an encrypted memory from
within the code.

Although the simulated CPU solves the problem of secure func-
tion evaluation (SFE), it is still slower than the native code by sev-
eral orders of magnitude. The following reasons can be identified:

• because of the oblivious memory access, the simulated CPU
must re-evaluate all memory cells in every cycle, regardless of
whether or not the plain text value actually changed;
• it is not possible to determine the end of a program without

the knowledge of the secret key. Thereforewhen approximating
the number of required cycles for the encrypted CPU, theworst-
case runtime has to be assumed.

3. Preliminaries

In this section, we will introduce the basic components that are
part of our search scheme as well as highlight their utility in the
scheme.

3.1. Homomorphic encryption schemes

The discovery of a fully homomorphic encryption scheme by
Gentry [16,2] in 2009 is an important foundation for the techniques
described in this work. However, for the construction of our
approachwedonot require a particular instance of a homomorphic
encryption scheme. Thus we use this generic definition:

Definition 1. A fully homomorphic encryption scheme E is a tuple of
functions

(KeyGenE () → (pk, sk), EncryptE (m, pk) → c,

DecryptE (c, sk) → m, EvaluateE (ci, C, pk) → c′)

with the following properties:

1. Correctness of the encryption scheme:

Decrypt(Encrypt(m, pk), sk) = m

for all outputs (pk, sk) of KeyGen().
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Fig. 2. Example of a Bloom filter for {CATA, CCGA, AGGT}with three hash functions.

2. Correctness of the homomorphic property:

Decrypt

Evaluate((Encrypt(m0, pk), . . . ,

Encrypt(mn, pk)), C, pk), sk

= C(m0, . . . ,mn)

for all outputs (pk, sk) of KeyGen() and all boolean circuits C :
{0, 1}m → {0, 1}.

For the remainder of this work we assume that all functions
(KeyGen() · · · ) belong to the same encryption scheme, even with-
out the index E .

We set the plain text space P to be {0, 1} and treat the cipher
texts as encrypted bits for the boolean operations XOR and AND
(which correspond to the addition andmultiplication of two cipher
texts). The cipher text space C of course depends on the particular
scheme used.

In the search scheme, homomorphic encryption is used to
execute an exact match search over the query and a reduced set of
the database. Note that since the homomorphic encryption scheme
is an asymmetric scheme, someone whowants to evaluate a circuit
only needs the public key pk (along with the inputs) to compute
Evaluate(). Further, since Encrypt() can also be executed by the
evaluator, the computations can also consist of a mix of plain text
and ciphertext. The result would then be encrypted and retrievable
only through the secret key sk.

3.2. Bloom filters

Bloom filters have been proposed by Bloom [19] in 1970. They
provide a way to check whether a string is included in a set of
strings, with a small probability that the Bloom filter wrongly out-
puts that the string is in the set while it is not (false positive). A
Bloom filter is a bit array with a fixed lengthm. In order to create a
Bloom filter from strings, one needs to also agree on a set of n hash
functions that each has a target set corresponding to the indexes of
the Bloom filter {0, . . . ,m}. For example, a Bloom filter for a string
x is then created by hashing the stringwith each of the n hash func-
tions and marking that index in the Bloom filter by writing a 1 at
the position of the index. A Bloom filter for a set of strings {a, b, c}
is created by first creating the Bloom filters of the elements a, b, and
c and then computing a component-wise booleanOR, i.e. a position
in the Bloom filter is marked if that position was marked in any of
the elements’ Bloom filters. The creation of Bloom filters with size
m = 15 and k = 3 hash functions for the set {CATA, CCGA, AGGT}
is shown in Fig. 2.

In order to use the Bloom filters to check for a set membership
(e.g. AGGT ∈ {CATA, CCGA, AGGT}), the Bloom filters of an element
AGGT and a set {CATA, CCGA, AGGT} are checked component-wise.
If an index exists in the Bloom filters that is marked in the Bloom
filter of the element AGGT but not in the Bloom filter of the set,
then certainly AGGT is not included in the set (because the Bloom
filter of the set is just a component-wise OR over the elements). If,
however, every marked position in the Bloom filter of AGGT is also
marked in the Bloom filter of the set, then AGGT is probably inclu-
ded in the set. This probability is bound by (1− e−k(|A|+0.5)/(m−1))k
as shown by Goel and Gupta [20]. Going back to the example in
Fig. 2, the string AGGT is not included in {CATA, CCGA, AGGT}, be-
cause hash function (2) for AGGT marked a position that was not
marked for either CATA, CCGA, or AGGT.
Fig. 3. A Bloom filter for ACGAwith obfuscation parameter λ = 4.

Notation. We denote

• Bk,m(a) for the Bloom filter of a with size m and k hash func-
tions,
• Bk,m(A) for the Bloom filter of a set A,
• Bk,m(a) ∈ Bk,m(A) if Bk,m(a)i ≤ Bk,m(A)i for all i; and Bk,m(a)
∉ Bk,m(A) otherwise.

In this paper, Bloom filters are used to construct a binary tree to
quickly reduce a large set of data to a small set of possible matches
via a binary search. In order to search for a string x in a large
database, we recursively check for the set membership of x in the
set containing all words in the database and continue to check for
the membership in the left and right half of the whole set if x is
included in it.

4. Obfuscated Bloom filters

We extend Bloom filters tomake false positives in the setmem-
bership checkmore probable. Themotivation behind this is to pass
an Obfuscated Bloom filter (OBF) of the query to the database that
then finds all database entries that contain the OBF. Without ob-
fuscation, this set would be small enough for the database to learn
about the actual query. By using the OBF, we will show that the
probability to retrieve the plain Bloom filter can be made small
enough that the actual result is hidden in the large set of false pos-
itives, i.e. the noise; yet small enough to make the processing of
these intermediate results in the homomorphic cipher text space
feasible. Thus it can be ensured that only a configurable percentage
of the results is not noise.

Obfuscating a Bloom filter works by incrementing λ random
components of the Bloom filter b = Bk,m(a), where λ is the ob-
fuscation parameter. Fig. 3 shows a Bloom filter for a string ACGA
that is obfuscated with λ = 4. The hamming weight of the OBF is
always k+ λ.

function obfuscate (b,m, λ):
for l in [λ] {
while (i

R
←− [m] and bi = 1)

bi ← 1
}.

Because obfuscation marks λ additional positions in the Bloom
filter, the set membership check needs some modification. Recall
that the set membership is tested by checking for each position
in the Bloom filter of the potential element whether that position
is also marked in the set. Now that the potential element is obfus-
cated, the setmembership is already concluded if at least kmarked
positions exist that are also marked in the set.

We now show that OBFs preserve the set membership property
of plain Bloom filters.

Claim 1. Given a Bloom filter B = Bk,m(A) for a set A and a (plain)
Bloom filter b = Bk,m(a) as well as an obfuscated version b′ =
obfuscate(b,m, λ). Then:

1. b ∈ B⇒ b′ ∈λ B
2. b′ ∈λ B⇒ Pr[b ∈ B] = 1/


k+λ

k


.
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Fig. 4. Model for the search query.

Proof. Let v← b′−b, v ∈ ∆λ be the vector the Bloom filter bwas
obfuscated with.

1.

b ∈ B ⇒ ∀i ∈ [m] : bi ≤ Bi

⇒ ∀i ∈ [m] : b′i − vi ≤ Bi

⇒ ∀i ∈ [m] : b′i ≤ Bi + vi
⇒ ∀i ∈ [m] : ∃v ∈ ∆λ

: b′i ≤ Bi + vi
⇒ b′ ∈λ B.

2. Given b′ ∈ B, Pr[b ∈ B] = Pr[b′− v ∈ B] for the random vector
v thatbwas obfuscatedwith. For a fix obfuscated vectorb′ (with

i b
′

i = k+ λ), there exist


k+λ

λ


vectors v so that v = b′ − b.

Therefore Pr[b ∈ B] = 1/


k+λ

λ


. �

5. Bloom filter search

5.1. High-level view of the search scheme

Fig. 4 shows a general overview of how a search query is created
and evaluated. User U wants to query Server S for a search term
s without S learning about this search term or the result. First of
all, U and S agree on a common alphabet Σ that influences the
following parameters:

• the domain of each hash function used in the Bloom filters is
Σ∗;
• the search term s ofU is an element ofΣ∗ (a word of the alpha-

bet Σ);
• the database A of S is a subset of P (Σ∗), the power set of Σ∗

(a set of words of the alphabet Σ).

To execute a search, U transforms the search term into an en-
crypted query, which is an OBF of s.

This query is then sent to S and used in the search algorithm.
The server uses the OBF to reduce the database to a smaller set of
possible matches.

We formalize this protocol as follows.

1. Setup of the Bloom filter tree.
S sets T ← buildTree(root, database).

2. Construction of the query.
The user U chooses a search term s and an hCrypt key pair
(pk, sk)← KeyGen().
He sets b ← obfuscate(Bk,m(s), λ) as well as s ← Encrypt
(s, pk).

3. Transfer of the encrypted query.
U transfers (b, λ, s, pk) to S.
4. Bloom filter search.
S obtains a set of results R← searchTree(T , b, λ).

5. hCrypt Search.
S obtains an encrypted result res of the hCrypt algorithm on R
and s.

6. Transfer of the results.
S transfers res back to U, who then retrieves the final result
r ← Decrypt(res, sk).

5.2. Setup of the Bloom filter tree

As mentioned above, a binary tree of Bloom filters is used to
pre-filter the search results. Every node of the binary tree is a tuple
(b, d, l, r), where b contains the Bloom filter associated with this
node and l and r reference the left and right child of the node
respectively. The l and r references are set to ‘null’ iff. the node is a
leaf. In this case d holds the database entry associatedwith the leaf.

Now we can describe the algorithm that builds the binary tree
from a database A. Note that this step is independent of the actual
query and can therefore be calculated beforehand and used for
many different queries.
1: function buildTree(node, A):
2: node.b← Bk,m(A)
3: if (|A| = 1) {
4: node.l← null
5: node.r ← null
6: return
7: }
8: buildTree(node.l, A|0..⌊|A|/2⌋)
9: buildTree(node.r, A|⌊|A|/2⌋+1..|A|)

10: return
The algorithm calculates the Bloom filter for the current node and
then recursively calls itself on the left and right half of the database
A when filling the left and right children of the node. Note that
although the initial construction of the binary tree runs in time
O(|A|), updates to the binary tree are quite cheap, because only the
nodes along the path from the changed node to the root need to be
updated. Updates therefore run in time O(log |A|).

Fig. 5 shows the content of the binary tree after the construc-
tion.

5.3. Search using Bloom filters and binary search

Once the binary tree is constructed, the Bloom filter search is
just a modified binary search over the Bloom filter of the query. In
the following algorithm, node is initially the root node of the binary
tree and b = obfuscate(Bn,m(s), λ) is the OBF of the query.
1: function searchTree(node, b, λ):
2: if (b /∈λ node.b) {
3: return ∅
4: }
5: if (node.l = null or node.r = null) {
6: return {node.d}
7: } else {
8: l← searchTree(node.l, b, λ)
9: r ← searchTree(node.r, b, λ)

10: return l ∪ r
11: }

Extension to stream search
For our application scenario we require the capability to search

on streams, so we show how the Bloom filter search can be mod-
ified to find a substring in a stream (instead of a discrete set of
words). Let s be the search term of U and A the database of S, i.e.
a character stream. The following steps are necessary to achieve a
stream search:
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Fig. 5. Binary tree of Bloom filters.
(a) Schematic transformation. (b) Transformation by example for the query ‘‘ggtagc’’.

Fig. 6. Transforming Bloom filter search to a stream search.
1. set the length of the Q -grams Q ≤ ⌊|s|/2⌋. This guarantees that
at least one Q -gram consists only of characters found in the
search term;

2. split the stream into Q -grams, thus getting a database of
roughly |A|/Q words of size Q (1. in Fig. 6);

3. from the search term, generate |s| Q -grams with offsets 0 · · ·
|s| − 1 (2. in Fig. 6);

4. combine the search terms Q -grams into one Bloom filter by
adding them component-wise;

5. execute the search with one Bloom filter as described above;
6. for each result, do an exact-match comparison in the ci-

pherspace, working directly on the encrypted search term and
the stream;

7. compress the result in the cipherspace to return the encrypted
positions of the search term in the stream.

This stream search extension is what we use to implement the real
world use case in Section 9.

5.4. Exact search using hCrypt

After S executed the Bloom filter search described above, the
(intermediate) results set R contains matches based on the OBF of
the original search term s andmay contain only a small percentage
of real results. In order to send just these real results back to the
user U, hCrypt can optionally be used to execute an exact match
search. This serves as an example of how the hCrypt can be used
on the results of the Bloom filter search to add further processing
to the whole search algorithm.

The goal of this step is for S to construct a single encrypted re-
sult res that contains a small number ofmatches of the search query
of U. First, S constructs an indication vector ind that marks all ex-
act matches. Then, S uses this indication vector to filter just those
intermediate results into the final results set which were marked
before.

As all these transformations happen in the homomorphic cryp-
tospace, S gains no knowledge over the final results during its con-
struction.

5.4.1. Exact match search
First, S marks which results are actual matches of s in the ho-

momorphic cipherspace. This is done by generating an encrypted
bit-array ind with the same size as the results set that will serve
as an indication vector. More precisely let {ri}li=1 = R be the set of
results. Then we want to construct an encrypted indication vector
{indi}

l
i=1 ∈ C l for the cipherspace C so that

ri = s⇔ Decrypt(indi, sk) = 1 for all i ∈ [l].
Note that in order to construct such a ind in the homomorphic ci-
pherspace, S only needs an encrypted version of s as well as the
public key pk, which both can be sent to S as part of the encrypted
query.
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We assume that the plain text space P = {0, 1}. In order to
compare words ∈Σ∗ in the ciphertext space, words from the al-
phabet must first be transformed to a binary representation. Let
binary : Σ∗ → {0, 1}∗ be this function. This function can easily
be constructed by first giving each character c ∈ Σ a unique num-
ber and then encode a word w ∈ Σ∗ as a sequence of the padded
binary representation of each character in w.

Let

s = {sj}j∈[|s|] ← {Encrypt(binary(s)j, pk)}

be the encrypted search term and

b = {bij}i∈[l],j∈[|s|] ← {Encrypt(binary(ri)j, pk)}

be the encrypted intermediate results set. The circuit for the
character-level comparison is constructed as follows:

indi ←

j

bij ⊕ sj ⊕ 1 for all i ∈ [l]. (1)

Now that the indication vector is filled, the marked intermediate
results need to be mapped to the final result.

5.4.2. Compressing the results
Assume that there are atmost c entries in the vector indmarked

with 1. This number can be approximated from the number of
results in the results set and the security parameter λ. Then an
indication vector containing at most c marks can be expressed as
a bit-vector with length c · |s|. The basic idea is to shift each result
which is a match (for which Decrypt(indi, sk) = 1) by |s| bits.

Let hamming(v) be the circuit that calculates the hamming
weight of v as constructed by Smart and Vercauteren [17, p. 15].
This circuit returns a bit vector of length ⌈ln c + 1⌉ if there are at
most c 1’s in v. Then, write down the cumulative sum of ind as the
|R| × ⌈ln c + 1⌉-matrix (sumij) using the following circuit:

sumij = hamming(ind0···i)j ∧ indi. (2)

Next, set the |R| × c-matrix

maskij =

1
⌈c⌉
k=0

2k
· sumik = j

0 else.
(3)

The final result can then be written as a c × |R|-matrix (resij) with

resij =

|R|−1
k=0

encrypt(Rk)j ∧ maskki. (4)

Fig. 7 shows the steps for a small example. The rows are mirrored
for better readability.

After this step, S holds an encrypted final results set res, which
contains at most c matches of the database against the search term
s. These results are then sent to U, who decrypts res using her
private key sk.

6. Security analysis

For the search scheme to be secure one needs to show that an
adversary is unable to extract the plain search query from the in-
puts, i.e. security against ciphertext-only attacks (COA) on the en-
crypted query. More precisely, given a tuple q = (b = obfuscate
(Bk,m(s)), λ, Encrypt(s, pk), pk) it is hard for an adversary A to re-
trieve s in probabilistic polynomial time (PPT). With that in mind
we define the following security game:

Definition 2. For COA-security of the search scheme, consider the
following gamebetween a challengerC (which takes the role of the
user in our scheme) and an adversary A. The functions KeyGen(),
Fig. 7. Steps for compressing a results set. For the query ‘‘AGGT’’ the exact-match
search circuit marked entries 2, 5 and 7 in ind, which is then transformed according
to Eqs. (2)–(4).

Encrypt(), Decrypt() and Evaluate() are assumed to be indistin-
guishable under a chosen-plain text attack (IND-CPA secure). For
example, the encryption schemes by Brakerski et al. [21] or Smart
and Vercauteren [17] are all IND-CPA secure. The game consists of
the following steps:
1. C chooses a random s, generates a keypair (pk, sk) = KeyGen(),

computes q as above and sends it to A.
2. A can repeatedly ask for the encryption of a specific query l; C

replies by sending (b = obfuscate(Bk,m(l)), λ, Encrypt(l, pk),
pk).

3. A computes a query s′ and sends it to C.
4. C outputs 1 iff. s = s′.
The adversary’s advantage AdvA(λ) is defined as Pr[s = s′]. A
search scheme is COA-secure if, for all A ∈ PPT the function AdvA

(λ) is negligible.

Claim 2. AdvA(λ) is a negligible function for any adversary that runs
in probabilistic polynomial time.

Proof. We show that AdvA(λ) ≤ 1/


k+λ

λ


, which is negligible in

λ, by contradiction.
Assume that there exists an adversaryA that runs in probabilis-

tic polynomial time and breaks the security game with advantage
> 1/


k+λ

λ


. Then we distinguish between three distinct cases:

1. A breaks the game by using (b = obfuscate(Bk,m(s)), λ) to re-
trieve s from (Encrypt(s, pk), pk).
A can then be used to break the IND-CPA security of the un-
derlying crypto system. Recall that the IND-CPA security game
challenges an adversary A′ who generated two plain texts
(s1, s2) to decide whether a ciphertext c is an encryption of s1
or s2 with non-negligible advantage. This is how A′ breaks the
game using A:
(a) A′ sends (s1, s2) to the challenger and receives a ciphertext

c and a public key pk.
(b) A′ uses A to ask for the encrypted queries qi = {(b)i, λ,

ci, pk′}2i=1.
(c) A′ sets qi ← {(b)i, λ, c, pk}2i=1 and uses A to retrieve s′1, s

′

2
(which we assumed A can do).

(d) A outputs i where s′i = si.
This contradicts the assumption that the underlying crypto sys-
tem is IND-CPA secure.

2. A already breaks the game with inputs only (Encrypt(s, pk),
pk).
It is easy to see that this again gives an adversaryA′ that breaks
CPA-security of the underlying homomorphic crypto system
and therefore contradicts the assumption that the crypto sys-
tem is IND-CPA secure. Note that this also covers the casewhere
A uses (Encrypt(s, pk), pk) to retrieve s from (b, λ).

3. A already breaks the game with inputs only (b, λ).
A can then construct a large set A = {ai}li=1 so that b∈λ Bk,m

(ai) for each i. Then starting from the assumption
1

λ+k
λ

 < AdvA(λ)
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we have the contradiction

AdvA(λ) = Pr[s = ai] (Definition of AdvA)

≤ Pr[b∈λ Bk,m(ai)] (Apply Bloom filters)

=
1

λ+k
λ

 (Claim 1)

⇒
1

λ+k
λ

 <
1

λ+k
λ

 . �

7. Choosing an obfuscation parameter

The real results to noise ratio is a measure of how unlikely cap-
tured data by an attacker would be useful. The smaller the ratio
is, the harder an attacker can make any use of it. For instance hid-
ing in 1%means the probability that any conclusions of an attacker
about the original search term and the results will be wrong in 99%
of the cases. So if a study associates one sequence S with a specific
illness and we search for S on the genome with 1% real results to
noise hiding ratio, it means that an attacker will have 99 wrong se-
quences along with S. An attacker can increase the certainty of her
choices by including more reasoning knowing for instance which
searches the user is interested in, what the user is attempting to
publish, what results do not make sense for the user, and so on.
Anyhow, taking into account that the real results to noise hiding
ratio can be variable and is unknown to the attacker, it involves a
huge effort from an attacker to reach a certainty that makes any
conclusions statistically valid.

8. Implementation

8.1. Source code

The Bloom filter search algorithm was implemented in C as
a binary tree with one root node and a pointer to the left and
right child of the node. Each node contains information about the
Bloom filter that represents the current subtree. Further, each leaf
contains the corresponding database value.

The construction of the Bloom filter tree (i.e., indexing of the
database) is done iteratively from a file. The algorithm scans the
file to determine the number of nodes required and then builds
the Bloom filter tree from the bottom up. The advantage over a
naïve recursive implementation is that all memory allocation can
be done in one call.

The source code can be found at https://hcrypt.com/downloads/
bf-search.zip and builds using CMake. For compilation and linking,
we require OpenSSL (for the hash functions in the Bloom filter tree)
aswell as Ruby 1.9 for theWeb service (described below). Amongst
others, the command-line program bloom_search is built, which
takes as amandatory parameter a chromosome file to index. In the
path /chromosomes is a script download.sh that fetches all hu-
man chromosome files from http://hgdownload.cse.ucsc.edu/.

The implementation code for the Bloom filter search is orga-
nized in four parts: the main executable in src/bloom_search,
the libraries for the Bloom filter and the Bloom filter tree in src/
lib/bloomfilter and src/lib/tree respectively, and the
ruby bindings in src/binding. Last but not least, unit tests can
be found in the directory src/test. As the main executable does
nothing else than parsing command line parameters and calling
the libraries, we focus on those in the following sections.

8.1.1. Implementation of the Bloom filter
Internally, a Bloom filter is represented as an array of 64-bit in-

tegers. Each entry in the Bloom filter is then represented as a bit
in one of the integers, so that a Bloom filter of size n can be repre-
sented as an array of size ⌈ n

64⌉. The functions bf_getpos() as well
as bf_setpos() are used to access the individual entries without di-
rect byte-arithmetics. Further, functions for creating a Bloom filter
from a string (bf_hash()) and obfuscation (bf_obfuscate()) are in-
cluded in this module.

8.1.2. Implementation of the Bloom filter tree
A Boom filter tree is an opaque struct that can be created by in-

dexing a chromosome file (tree_index_file()). The struct contains
a reference to the root node, the filename, and a list of matches
which will be filled during the search. Indexing the database from
a file has been parallelized using the pthreads library. The algo-
rithms for indexing and searching have been discussed in detail in
Sections 5.2 and 5.3.

8.2. Web service

The Bloom filter search library iswritten in C in consideration of
speed and portability. In order to provide integration with various
different infrastructures, we provide a wrapper around the library
that exposes the search functionality through a Web service. The
service understands Representational State Transfer (REST) as well
as SOAP.

8.2.1. REST interface
Using REST, the Web service interface is exposed through HTTP

verbs (GET, POST, PUT, PATCH, DELETE) that connect to a URI. The
Web service is written in Ruby (as a rack-application) and can
be found in the path ws/rest-server/rest.rb. The script ex-
pects a Ruby-C-extension built in build/bftree.so (which can
be satisfied by using build/ as the build directory) as well as the
chromosomes downloaded in chromosomes/.

For the search service, only one endpoint is required: GET/
search. The following parameters must be specified in the re-
quest:

query: The obfuscated Bloom filter, encoded as 0’s and 1’s.
obfuscations: The obfuscation parameter.

The service then replies with a JSON-encoded hash containing
the query, the obfuscations, the time the search took, and an array
of matches.

Example. The client sends the following message to the server:
http://hcrypt.com:1338/search?
obfuscations=10&
query=000000000000010010010100010001000010000
10000001010000001011
000010000010000000000000000000000000100000000
0000000000100000100

The server responds with the following message:
{

"query": "00000000000001001001010001000
10000...",
"time": 0.0500000007450581,
"matches": [

{ "match": "AAGCT", "position": 7 },
{ "match": "ggctg", "position": 428050 },
{ "match": "GTTGC", "position": 54161548 }

]
}

8.2.2. SOAP interface
SOAP is still a widely-used standard for calling aWeb service as

well as orchestrating multiple Web services. Therefore, we devel-
oped a SOAP front end for the REST interface which can be called
from any SOAP-aware program. The server resides in the path
ws/soap-server/GSearch/. Additionally, an example SOAP

https://hcrypt.com/downloads/bf-search.zip
https://hcrypt.com/downloads/bf-search.zip
https://hcrypt.com/downloads/bf-search.zip
https://hcrypt.com/downloads/bf-search.zip
https://hcrypt.com/downloads/bf-search.zip
https://hcrypt.com/downloads/bf-search.zip
http://hgdownload.cse.ucsc.edu/
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client can be found in ws/soap-server/GSearchClient/.
Both client and server are written in Java. The WSDL description
of the Web service can be found at http://www.hcrypt.com:1337/
GSearch/services/GSearch?wsdl.

8.2.3. Clients
Amongst others, the obfuscation of the Bloom filter happens on

the client side. Since the Bloom filters are used for the actual search,
it is crucial that the client and the server construct the Bloom filters
in the same way. In the following pseudo code,m is the size of the
Bloom filter and k the number of hash functions. The hash functions
are all derived from a SHA hash of the query.
1: function construct_bf(str):
2: bf← {0}m−1i=0
3: d← bytes(SHA1(str))
4: for i in [k] {
5: bfdi mod m ← 1
6: }
7: return true
For writing a new client, one could either use the bf_hash()

function in the libbloomfilter library or use the client in
ws/client/. The client is written in JavaScript and runs entirely
in the browser. Communication with the RESTWeb service is done
through asynchronous HTTP requests (AJAX). A live demo runs on
https://hcrypt.com/bf-client/.

8.3. Asymptotic runtime and communication complexity

8.3.1. Communication complexity
Looking at the protocol introduced in Section 5.1, the only

information sent from U to S is the tuple q = (b, λ). Splitting up
the tuple into it is components, we get

• |b| = |Bk,m
| is in O(m), as b is a vector of lengthm,

• |λ| is in O(log λ), as λ has log λ bits in binary representation.

Because the encrypted query is just a concatenation of the
components, |q| ∈ O(m+ log λ). The information sent from S toU

is the results set R with the size |R| =


k+λ

λ


. Combining the total

traffic, the overall combined complexity is in

O


m+ log λ+


k+ λ

λ


≈ O(|s|), (5)

because the other parameters do not depend on the input of U but
instead are parameters of the search scheme.

Note that the communication complexity depends only on pa-
rameters of the search protocol and not on the size of the database.

8.3.2. Runtime complexity
The Bloom filter tree search resembles a binary search with

runtime complexity in O(log |A|) for a database A, as shown in the
pseudo code for searchTree(). For each step of the traversal of the
Bloom filter tree, the set membership ∈λ has to be computed. This
can be done in O(m) (for Bloom filter size m) using the following
algorithm:
1: function included_in(b, B, λ):
2: for i in [m] {
3: if (bi > Bi) { // Check for mismatch
4: λ← λ− (bi − Bi) // use λ to make B larger
5: if (λ < 0) { // . . .until no tolerance is left
6: return false // . . .which concludes /∈
7: }
8: }
9: }

10: return true
Fig. 8. Sketch of the search circuit.

This concludes that the runtime complexity of the Bloom filter
search is in O(m · log |A|).

Next, we look at the complexity of the hybrid homomorphic
part. The computational complexity of this part relates to the
number of gates of the circuit, which can be split into two parts
as follows.
1. Construction of the indication vector ind.

This circuit has been constructed in Eq. (1). The inner term
(bij⊕sj⊕1) is conjugated over the binary representation of s and
|binary(s)| = |s| · log2 |Σ |. The conjunction can be expressed as
a tree of binary AND-gates with s1 = 2 + (|s| · log2 |Σ |) total
gates.

2. Construction of the final results set res.
In Eq. (4) the marked results are translated into the final results
set. The XOR over all intermediate results R can again bewritten
as a tree of binary XOR-gates, resulting in s2 = |R| total gates.

In Fig. 8 a schematic view of the depth of the circuit is shown. The
final number of gates of the circuit is then given by
s1 + s2 = 2+ (|s| · log2 |Σ |)+ |R| ∈ O(|s| + |R|), (6)
again because the other parameters do not depend on the inputs
of U or S but instead are parameters of the search scheme.

The size of R can be controlled by the parameters of the Bloom
filter k and m as well as the security parameter λ.

Putting together the Bloom filter search and the homomorphic
circuits, the total runtime complexity is in
O(log |A| + |s| + |R|) (7)
when just considering the inputs from U and S.

9. Use case

Moving from genetic to genomic research as well as the ad-
vances in the proteome research has resulted in sophisticated
and large databases infrastructures, e.g. Ensembl (http://www.
ensembl.org/), European Nucleotide Archive (ENA, http://www.
ebi.ac.uk/ena/), or UniProt (http://www.uniprot.org/). Among dif-
ferent applications, these databases are used to perform the se-
quence alignment or sequences search. In the sense of moving
towards personalized medicine as a strategic future healthcare
paradigm, as well as pharmacogenetics and/or pharmacogenomics
as a part of new drugs development process, performing an exact
search of a specific nucleotide subsequence of a patient or sub-
ject in one or more of these genomic databases is essential. A key
question regarding such search is the data protection and privacy
constraints of the queried sequence. For instance, genetic/genomic
sequences carry indication to different phenotypes. As not all geno-
types–phenotypes correlations are known to us, outsourcing any
database search that involves sending subject’s genomics/genetic
data outside the research institute becomes risky and violates the
subject’s privacy in many cases. This depends on the context of the
subject consent, the country to where the data are outsourced and
different other aspects. All of this makes outsourcing of the plain
text sequence search difficult, and often forbidden due to privacy
laws.

http://www.hcrypt.com:1337/GSearch/services/GSearch?wsdl
http://www.hcrypt.com:1337/GSearch/services/GSearch?wsdl
http://www.hcrypt.com:1337/GSearch/services/GSearch?wsdl
http://www.hcrypt.com:1337/GSearch/services/GSearch?wsdl
http://www.hcrypt.com:1337/GSearch/services/GSearch?wsdl
http://www.hcrypt.com:1337/GSearch/services/GSearch?wsdl
http://www.hcrypt.com:1337/GSearch/services/GSearch?wsdl
http://www.hcrypt.com:1337/GSearch/services/GSearch?wsdl
http://www.hcrypt.com:1337/GSearch/services/GSearch?wsdl
https://hcrypt.com/bf-client/
http://www.ensembl.org/
http://www.ensembl.org/
http://www.ensembl.org/
http://www.ensembl.org/
http://www.ebi.ac.uk/ena/
http://www.ebi.ac.uk/ena/
http://www.ebi.ac.uk/ena/
http://www.ebi.ac.uk/ena/
http://www.ebi.ac.uk/ena/
http://www.ebi.ac.uk/ena/
http://www.uniprot.org/
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The hybrid homomorphic search introduced in this paper in
cooperation with the bio-informatics lab of the Leiden University
Medical Center allows us to operate outsourced searches in this
environment without endangering the patient privacy.

9.1. Example

The following example should illustrate the application of the
stream search to find a subsequence in a larger DNA sequence. For
this purpose, let the large DNA sequence Dwith |D| = 48 be given
by

D = aggtcaagtccggaatacgtacgaacgtggcagctactcgagatccga (8)

and the search term swith |s| = 8 given by

s = cgaacgtg. (9)

Next, choose Q = 4 ≤ ⌊|s|/2⌋ and split D into twelve 4-grams

D0 = aggt D6 = acgt
D1 = caag D7 = ggca
D2 = tccg D8 = gcta
D3 = gaat D9 = ctcg
D4 = acgt D10 = agat
D5 = acga D11 = ccga

and build up the Bloom filter tree from these Bk,m(Di)’s. This com-
pletes the indexing phase on the server side.

From the query, generate five 4-grams

s0 = cgaa s3 = acgt
s1 = gaac s4 = cgtg
s2 = aacg

and build one query Bloom filter Bk,m({si}). Note that this query
has the same property as an obfuscated query (see Section 4) with
an obfuscation parameter ofλ = 16. The complete query q consists
of (Bk,m({si}), λ, s, pk) where s = Encrypt(s) is the encrypted
query. This completes the preparation phase on the client side.

The actual search is conducted using the Bloom filter search de-
scribed above, using the set membership ∈λ. In this example, the
results set R will include {(acgt, 4), (acgt, 6), (acgt, 9)}. This re-
sults set is transferred back to the client, who then checks each
element of the results for an actual match.

10. Performance evaluation

As an example of real world problem sizes the procedure de-
scribed above was used to index and search two human chromo-
somes of different sizes (available at ftp://hgdownload.cse.ucsc.
edu/goldenPath/hg19/chromosomes/ or using the script in chro-
mosomes/folder of the source code1). The experimentswere runon
a 2.8 GHz Intel Core i7 with 8 GB RAM. The index process utilizes
all four hardware threads, the search runs only single-threaded.
All timings are averages over 100 runs and can be reproduced by
executing script/benchmark.rb in the source code package.
The script expects that the Ruby library has been build in build/
release.

Table 1 and Fig. 9 show the results for different human chromo-
somes. We chose Bloom filters of size 123, as 123 bits fit well into
two native 64-bit integers with 5 bits left for internal flags, and 10
SHA-basedhash functions to have enough room left for obfuscation
as well as set-based Bloom filters. The percentage corresponds to

1 https://hcrypt.com/downloads/bf-search.zip.
Table 1
Performance of the obfuscated search.

File size (MB) Index (s) Search (hiding in x%)
Baseline
(s)

11%
(s)

5%
(s)

1% (s)

chr1.fa 254 3.62 0.016 0.056 0.078 0.096
chr2.fa 248 3.56 0.011 0.046 0.079 0.096
chr3.fa 201 2.74 0.009 0.038 0.063 0.076
chr4.fa 194 2.65 0.008 0.036 0.061 0.073
chr5.fa 184 2.50 0.008 0.034 0.056 0.070
chr6.fa 174 2.49 0.008 0.032 0.060 0.071
chr7.fa 162 2.24 0.007 0.030 0.049 0.061
chr8.fa 149 2.04 0.007 0.029 0.047 0.057
chr9.fa 144 2.10 0.005 0.023 0.039 0.047
chr10.fa 138 1.84 0.006 0.025 0.042 0.051
chr11.fa 137 1.82 0.006 0.025 0.042 0.051
chr13.fa 117 1.59 0.004 0.018 0.031 0.037
chr14.fa 109 1.48 0.004 0.016 0.028 0.034
chr15.fa 104 1.38 0.004 0.015 0.026 0.032
chr16.fa 92 1.22 0.004 0.015 0.025 0.031
chr17.fa 82 1.11 0.003 0.014 0.024 0.030
chr18.fa 79 1.04 0.003 0.014 0.024 0.030
chr19.fa 60 0.79 0.002 0.010 0.018 0.022
chr20.fa 64 0.85 0.003 0.011 0.019 0.023
chr21.fa 49 0.67 0.001 0.007 0.012 0.015
chr22.fa 52 0.72 0.001 0.006 0.011 0.014

Table 2
Performance of homomorphic post-processing.

Searchterm size (Bit) Size of the set
100 elements (s) 1000 elements (s)

5 0.007 0.067
16 11.300 115.000
32 27.800 288.000
64 55.600 560.000

the ratio of real results
noise . For example, hiding in 5%means that only 5%

of the results are real, the other 95% of the resultswere noise added
because of the Obfuscated Bloom filters. The baseline performance
is given as a search with no obfuscation added.

It should be noted that using our approach the database con-
taining the Chromosomes only needs to be indexed once indepen-
dently of the number of users querying the database.

As stated above, these results can be processed further using
hCrypt due to the small size of the results generated by the Bloom
filter search. The performance figures of an exact match search
using hCrypt for different results set and search term sizes are
outlined in Table 2.

10.1. Performance comparison with PIR schemes

For a performance comparison between our Obfuscated Bloom
filter search and Private Information Retrieval (PIR) techniques,
data from Costea et al. [22] will be used. Costea et al. have im-
plemented two PIR schemes: one based on the Quadratic Resid-
uosity Assumption (QRA-PIR) by Kushilevitz and Ostrovsky [6],
and one based on the φ-hiding Assumption (φ-PIR) by Gentry and
Ramzan [5]. Both implementations were written in C++, which is
roughly comparable to the C implementation of the Bloom filter
search.

The PIR implementations operate on the location-based data,
but the general search scenario is the same: a private search for a
point of interest (POI) in a database.We assume that a POI has a size
of 32 B, i.e. it just contains the GPS coordinates. Fig. 10 shows the
performance comparison of the two PIR schemes along with the
performance of theObfuscated Bloom filter search. Because the dif-
ferences between the compared systems are so huge, the numbers
can also be seen in Table 3. Since Costea et al. did not publish their
source code for the PIR schemes, we relied on their measurements,

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
https://hcrypt.com/downloads/bf-search.zip
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Fig. 9. Plot of the performance of the obfuscated search.
(a) Comparison of server CPU time. (b) Comparison of communication size.

Fig. 10. Comparison of the Bloom filter search with two different PIR schemes.
whichwe took from the graphs in [22, Figs. 3–4]. For the communi-
cation size ofφ-PIR, the graphs did not show a significant deviation
from zero, which is why we set the column to 0.0 MB. Still, at least
a single result would need to be transmitted.

For the server CPU timings, OBF is significantly faster than both
PIR schemes, even when hiding in 1% of the results. Search times
of 12 s for QRA-PIR and even 75 s for φ-PIR for a file under 2 MB
size shows that even recent PIR schemes are still far from achieving
the performance needed to search in large datasets common in
biology. Considering the communication size, OBF is about as good
as φ-PIR, and a drastic improvement over QRA-PIR (OBF: 1478 B,
QRA-PIR: 1.25 MB). When combining the server CPU time and the
communication size, the compared PIR schemes are either fast on
the server or light on the wire, but not both. However, PIR still
promises a stronger security, yet without the possible trade-off to
sacrifice a little bit of security for a large performance boost.
Table 3
Comparison of the Bloom filter search with two different PIR schemes.

File size Server CPU (time) Communication (size)
QRA (s) φ-PIR (s) OBF (s) QRA

(MB)
φ-PIR
(MB)

OBF
(B)

0.58 3.5 13.0 0.0098 0.55 0.0 422
0.79 4.2 17.0 0.0105 0.65 0.0 529
0.95 5.5 21.5 0.0138 0.75 0.0 637
1.03 6.0 35.0 0.0139 0.80 0.0 745
1.48 10.0 60.0 0.0200 1.15 0.0 674
1.90 12.0 75.0 0.0283 1.25 0.0 1478

11. Conclusion

In thiswork,we introduced a search algorithm that utilizes Obf-
uscatedBloom filters to ensure the confidentiality of search queries
as well as the results of the search. Through obfuscation, the query
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can be made secure enough to conform to data protection regula-
tions, yet the set of results is small enough to allow further pro-
cessing with hCrypt, e.g. an exact-match search as demonstrated
in this paper. Our approach achieves a communication complexity
of O(|s|) as well as the runtime complexity of O(log |A|+ |s|+ |R|)
with a flexible parameter to adjust the size of the results set R.

Also, the size of the database that can be searched is sufficiently
large and the search itself is fast enough (O(log |A|)) for first real
world use cases to be practically implemented. We showed an ex-
tensive performance analysis and comparisons with PIR schemes.
We presented a security analysis of our design and demonstrated
its feasibility using datasets containing human chromosomes. This
is one of the first systems to enable the practical use of hCrypt. Be-
yond offering a solution for search with encrypted terms, this pa-
per also serves as an example of how systems can be designed to
incorporate the new possibilities of Homomorphic Encryption.
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